Ýçindekiler
Görüntüler
Resim Yükleyin
DSS Images Other Images
Ýlgili Makaleler
Colour-differential interferometry for the observation of extrasolar planets We present the high angular resolution technique of colour-differentialinterferometry for direct detection of extrasolar giant planets (EGPs).The measurement of differential phase with long-baseline ground-basedinterferometers in the near-infrared could allow the observation ofseveral hot giant extrasolar planets in tight orbit around the nearbystars, and thus yield their low- or mid-resolution spectroscopy,complete orbital data set and mass. Estimates of potentially achievablesignal-to-noise ratios are presented for a number of planets alreadydiscovered by indirect methods. The limits from the instrumental andatmospheric instability are discussed, and a subsequent observationalstrategy is proposed.
| Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems We present results of a reconnaissance for stellar companions to all 131radial velocity-detected candidate extrasolar planetary systems known asof 2005 July 1. Common proper-motion companions were investigated usingthe multiepoch STScI Digitized Sky Surveys and confirmed by matching thetrigonometric parallax distances of the primaries to companion distancesestimated photometrically. We also attempt to confirm or refutecompanions listed in the Washington Double Star Catalog, in the Catalogsof Nearby Stars Series by Gliese and Jahreiß, in Hipparcosresults, and in Duquennoy & Mayor's radial velocity survey. Ourfindings indicate that a lower limit of 30 (23%) of the 131 exoplanetsystems have stellar companions. We report new stellar companions to HD38529 and HD 188015 and a new candidate companion to HD 169830. Weconfirm many previously reported stellar companions, including six starsin five systems, that are recognized for the first time as companions toexoplanet hosts. We have found evidence that 20 entries in theWashington Double Star Catalog are not gravitationally bound companions.At least three (HD 178911, 16 Cyg B, and HD 219449), and possibly five(including HD 41004 and HD 38529), of the exoplanet systems reside intriple-star systems. Three exoplanet systems (GJ 86, HD 41004, andγ Cep) have potentially close-in stellar companions, with planetsat roughly Mercury-Mars distances from the host star and stellarcompanions at projected separations of ~20 AU, similar to the Sun-Uranusdistance. Finally, two of the exoplanet systems contain white dwarfcompanions. This comprehensive assessment of exoplanet systems indicatesthat solar systems are found in a variety of stellar multiplicityenvironments-singles, binaries, and triples-and that planets survive thepost-main-sequence evolution of companion stars.
| HD 98618: A Star Closely Resembling Our Sun Despite the observational effort carried out in the last few decades, noperfect solar twin has been found to date. An important milestone wasachieved a decade ago by Porto de Mello & da Silva, who showed that18 Sco is almost a solar twin. In the present work, we use extremelyhigh resolution (R=105), high signal-to-noise ratio KeckHIRES spectra to carry out a differential analysis of 16 solar-twincandidates. We show that HD 98618 is the second-closest solar twin andthat the fundamental parameters of both HD 98618 and 18 Sco are verysimilar (within a few percent) to the host star of our solar system,including the likelihood of hosting a terrestrial planet within theirhabitable zones. We suggest that these stars should be given toppriority in exoplanet and SETI surveys.The data presented herein were obtained at the W. M. Keck Observatory,which is operated as a scientific partnership among the CaliforniaInstitute of Technology, the University of California, and the NationalAeronautics and Space Administration.
| Dwarfs in the Local Region We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.
| Chemical Composition of the Planet-harboring Star TrES-1 We present a detailed chemical abundance analysis of the parent star ofthe transiting extrasolar planet TrES-1. Based on high-resolution KeckHIRES and Hobby-Eberly Telescope HRS spectra, we have determinedabundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc,Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting averageabundance of <[X/H]>=-0.02+/-0.06 is in good agreement withinitial estimates of solar metallicity based on iron. We compare theelemental abundances of TrES-1 with those of the sample of stars withplanets, searching for possible chemical abundance anomalies. TrES-1appears not to be chemically peculiar in any measurable way. Weinvestigate possible signs of selective accretion of refractory elementsin TrES-1 and other stars with planets and find no statisticallysignificant trends of metallicity [X/H] with condensation temperatureTc. We use published abundances and kinematic information forthe sample of planet-hosting stars (including TrES-1) and severalstatistical indicators to provide an updated classification in terms oftheir likelihood to belong to either the thin disk or the thick disk ofthe Milky Way. TrES-1 is found to be very likely a member of thethin-disk population. By comparing α-element abundances of planethosts and a large control sample of field stars, we also find thatmetal-rich ([Fe/H]>~0.0) stars with planets appear to besystematically underabundant in [α/Fe] by ~0.1 dex with respect tocomparison field stars. The reason for this signature is unclear, butsystematic differences in the analysis procedures adopted by differentgroups cannot be ruled out.
| A Comparative Study on Lithium Abundances in Solar-Type Stars With and Without Planets We have investigated the abundance anomalies of lithium for stars withplanets in the temperature range of 5600-5900 K reported by Israelianand coworkers, as compared to 20 normal stars in the same temperatureand metallicity ranges. Our result indicates a higher probability oflithium depletion for stars with planets in the main-sequence stage. Itseems that stellar photospheric abundances of lithium in stars withplanets may be somewhat affected by the presence of planets. Twopossible mechanisms are considered to account for the lower Liabundances of stars with planets. One is related to the rotation-inducedmixing due to the conservation of angular momentum by the protoplanetarydisk, and the other is a shear instability triggered by planetmigration. These results provide new information on stellar evolutionand the lithium evolution of the Galaxy.
| Abundances of refractory elements in the atmospheres of stars with extrasolar planets Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.
| Ground-based direct detection of close-in extra-solar planets with nulling and high order adaptive optics Ground-based direct detection of extra-solar planets is very challengingdue to high planet to star brightness contrasts. For giant close-inplanets, such as have been discovered by the radial velocity method,closer than 0.1 AU, the reflected light is predicted to be fairly highyielding a contrast ratio ranging from 10-4 to10-5 at near infra-red wavelengths. In this paper, weinvestigate direct detection of reflected light from such planets usingnulling interferometry, and high-order adaptive optics in conjunctionwith large double aperture ground-based telescopes. In thisconfiguration, at least 10-3 suppression of the entirestellar Airy pattern with small loss of planet flux as close as 0.03arcsec is achievable. Distinguishing residual starlight from the planetsignal is achieved by using the center of gravity shift method ormulticolor differential imaging. Using these assumptions, we deriveexposure times from a few minutes to several hours for direct detectionof many of the known extra-solar planets with several short-baselinedouble aperture telescopes such as the Large Binocular Telescope (LBT),the Very Large Telescope (VLT) and the Keck Telescope.
| Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators We present a detailed and uniform study of oxygen abundances in 155solar type stars, 96 of which are planet hosts and 59 of which form partof a volume-limited comparison sample with no known planets. EWmeasurements were carried out for the [O I] 6300 Å line and the OI triplet, and spectral synthesis was performed for several OH lines.NLTE corrections were calculated and applied to the LTE abundanceresults derived from the O I 7771-5 Å triplet. Abundances from [OI], the O I triplet and near-UV OH were obtained in 103, 87 and 77dwarfs, respectively. We present the first detailed and uniformcomparison of these three oxygen indicators in a large sample ofsolar-type stars. There is good agreement between the [O/H] ratios fromforbidden and OH lines, while the NLTE triplet shows a systematicallylower abundance. We found that discrepancies between OH, [O I] and the OI triplet do not exceed 0.2 dex in most cases. We have studied abundancetrends in planet host and comparison sample stars, and no obviousanomalies related to the presence of planets have been detected. Allthree indicators show that, on average, [O/Fe] decreases with [Fe/H] inthe metallicity range -0.8< [Fe/H] < 0.5. The planet host starspresent an average oxygen overabundance of 0.1-0.2 dex with respect tothe comparison sample.
| A link between the semimajor axis of extrasolar gas giant planets and stellar metallicity The fact that most extrasolar planets found to date are orbitingmetal-rich stars lends credence to the core accretion mechanism of gasgiant planet formation over its competitor, the disc instabilitymechanism. However, the core accretion mechanism is not refined to thepoint of explaining orbital parameters such as the unexpected semimajoraxes and eccentricities. We propose a model that correlates themetallicity of the host star with the original semimajor axis of itsmost massive planet, prior to migration, assuming that the coreaccretion scenario governs giant gas planet formation. The modelpredicts that the optimum regions for planetary formation shift inwardsas stellar metallicity decreases, providing an explanation for theobserved absence of long-period planets in metal-poor stars. We compareour predictions with the available data on extrasolar planets for starswith masses similar to the mass of the Sun. A fitting procedure producesan estimate of what we define as the zero-age planetary orbit (ZAPO)curve as a function of the metallicity of the star. The model hints thatthe lack of planets circling metal-poor stars may be partly caused by anenhanced destruction probability during the migration process, becausethe planets lie initially closer to their central star.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Prospects for Habitable ``Earths'' in Known Exoplanetary Systems We have examined whether putative Earth-mass planets could remainconfined to the habitable zones (HZs) of the 111 exoplanetary systemsconfirmed by 2004 August. We find that in about half of these systemsthere could be confinement for at least the past 1000 Myr, though insome cases only in variously restricted regions of the HZ. The HZmigrates outward during the main-sequence lifetime, and we find that inabout two-thirds of the systems an Earth-mass planet could be confinedto the HZ for at least 1000 Myr sometime during the main-sequencelifetime. Clearly, these systems should be high on the target list forexploration for terrestrial planets. We have reached our conclusions bydetailed investigations of seven systems, which has resulted in anestimate of the distance from the giant planet within which orbitalstability is unlikely for an Earth-mass planet. This distance is givenby nRH, where RH is the Hill radius of the giantplanet and n is a multiplier that depends on the giant's orbitaleccentricity and on whether the Earth-mass planet is interior orexterior to the giant planet. We have estimated n for each of the sevensystems by launching Earth-mass planets in various orbits and followingtheir fate with a hybrid orbital integrator. We have then evaluated thehabitability of the other exoplanetary systems using nRHderived from the giant's orbital eccentricity without carrying outtime-consuming orbital integrations. A stellar evolution model has beenused to obtain the HZs throughout the main-sequence lifetime.
| Radial Velocity Detectability of Low-Mass Extrasolar Planets in Close Orbits Detection of Jupiter-mass companions to nearby solar-type stars withprecise radial velocity measurements is now routine, and Doppler surveysare moving toward lower velocity amplitudes. The detection of severalNeptune-mass planets with orbital periods of less than a week has beenreported. The drive toward the search for close-in, Earth-mass planetsis on the agenda. Successful detection or meaningful upper limits willplace important constraints on the process of planet formation. In thispaper, we quantify the statistics of detection of low-mass planets inclose orbits, showing how the detection threshold depends on the numberand timing of the observations. In particular, we consider the case of alow-mass planet close to but not on the 2:1 mean motion resonance with ahot Jupiter. This scenario is a likely product of the core-accretionhypothesis for planet formation coupled with migration of Jupiters inthe protoplanetary disk. It is also advantageous for detection becausethe orbital period is well constrained. We show that the minimumdetectable mass is ~4 M⊕(N/20)-1/2(σ/ms-1)(P/days)1/3(M*/Msolar)2/3for N>=20, where N is the number of observations, P is the orbitalperiod, σ is the quadrature sum of Doppler velocity measurementerrors and stellar jitter, and M* is the stellar mass.Detection of few Earth-mass rocky cores will require ~1 m s-1velocity precision and, most important, a better understanding ofstellar radial velocity ``jitter.''
| On the ages of exoplanet host stars We obtained spectra, covering the CaII H and K region, for 49 exoplanethost (EH) stars, observable from the southern hemisphere. We measuredthe chromospheric activity index, R'{_HK}. We compiled previouslypublished values of this index for the observed objects as well as theremaining EH stars in an effort to better smooth temporal variations andderive a more representative value of the average chromospheric activityfor each object. We used the average index to obtain ages for the groupof EH stars. In addition we applied other methods, such as: Isochrone,lithium abundance, metallicity and transverse velocity dispersions, tocompare with the chromospheric results. The kinematic method is a lessreliable age estimator because EH stars lie red-ward of Parenago'sdiscontinuity in the transverse velocity dispersion vs dereddened B-Vdiagram. The chromospheric and isochrone techniques give median ages of5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The medianage of F and G EH stars derived by the isochrone technique is 1-2 Gyrolder than that of identical spectral type nearby stars not known to beassociated with planets. However, the dispersion in both cases is large,about 2-4 Gyr. We searched for correlations between the chromosphericand isochrone ages and L_IR/L* (the excess over the stellarluminosity) and the metallicity of the EH stars. No clear tendency isfound in the first case, whereas the metallicy dispersion seems toslightly increase with age.
| Sulphur abundance in Galactic stars We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2 [Fe/H] +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]-1; 2) at low metallicities we observe stars with [S/Fe] 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.
| Abundances of Na, Mg and Al in stars with giant planets We present Na, Mg and Al abundances in a set of 98 stars with knowngiant planets, and in a comparison sample of 41 “single”stars. The results show that the [X/H] abundances (with X = Na, Mg andAl) are, on average, higher in stars with giant planets, a resultsimilar to the one found for iron. However, we did not find any strongdifference in the [X/Fe] ratios, for a fixed [Fe/H], between the twosamples of stars in the region where the samples overlap. The data wasused to study the Galactic chemical evolution trends for Na, Mg and Aland to discuss the possible influence of planets on this evolution. Theresults, similar to those obtained by other authors, show that the[X/Fe] ratios all decrease as a function of metallicity up to solarvalues. While for Mg and Al this trend then becomes relatively constant,for Na we find indications of an upturn up to [Fe/H] values close to0.25 dex. For metallicities above this value the [Na/Fe] becomesconstant.
| Stellar wind regimes of close-in extrasolar planets Close-in extrasolar planets of Sun-like stars are exposed to stellarwind conditions that differ considerably from those for planets in thesolar system. Unfortunately, these stellar winds belong to the stillunknown parameters of these planetary systems. On the other hand, theyplay a crucial role in a number of star-planet interaction processesthat may lead to observable radiation events. In order to lay afoundation for the investigation of such interaction processes, weestimate stellar wind parameters on the basis of the solar wind model byWeber & Davis and study the implications of the stellar magneticfields. Our results suggest that in contrast to the solar systemplanets, some close-in extrasolar planets may be obstacles in asub-Alfvénic stellar wind flow. In this case, the stellar windmagnetic pressure is comparable to or even larger than the dynamic flowpressure. We discuss possible consequences of these findings for thewind-exoplanet interactions. Further, we derive upper limit estimatesfor the energies such stellar winds can deposit in the exoplanetarymagnetospheres. We finally discuss the implications thesub-Alfvénic environment may have on the star-planet interaction.
| On the possible correlation between the orbital periods of extrasolar planets and the metallicity of the host stars We investigate a possible correlation between the orbital periods P ofthe extrasolar planet sample and the metallicity [Fe/H] of their parentstars. Close-in planets, on orbits of a few days, are more likely to befound around metal-rich stars. Simulations show that a weak correlationis present. This correlation becomes stronger when only single starswith one detected planet are considered. We discuss several potentialsources of bias that might mimic the correlation, and find that they canbe ruled out, but not with high significance. If real, the absence ofvery short-period planets around the stellar sample with [Fe/H] < 0.0can be interpreted as evidence of a metallicity dependence of themigration rates of giant planets during formation in the protoplanetarydisc. The observed P-[Fe/H] correlation can be falsified or confirmed byconducting spectroscopic or astrometric surveys of metal-poor stars([Fe/H] < -0.5) in the field.
| Capture and escape in the elliptic restricted three-body problem Several families of irregular moons orbit the giant planets. These moonsare thought to have been captured into planetocentric orbits afterstraying into a region in which the gravitation of the planet dominatessolar perturbations (the Hill sphere). This mechanism requires a sourceof dissipation, such as gas drag, in order to make capture permanent.However, capture by gas drag requires that particles remain inside theHill sphere long enough for dissipation to be effective. Recently wehave proposed that in the circular restricted three-body problem (CRTBP)particles may become caught up in sticky chaotic layers, which tends toprolong their sojourn within the Hill sphere of the planet therebyassisting capture. Here, we show that this mechanism survivesperturbations due to the ellipticity of the orbit of the planet.However, Monte Carlo simulations indicate that the ability of the planetto capture moons decreases with increasing orbital eccentricity. At theactual orbital eccentricity of Jupiter, this results in approximately anorder of magnitude lower capture probability than estimated in thecircular model. Eccentricities of planetary orbits in the Solar systemare moderate but this is not necessarily the case for extrasolarplanets, which typically have rather eccentric orbits. Therefore, ourfindings suggest that these extrasolar planets are unlikely to havesubstantial populations of irregular moons.
| Obliquity variations of terrestrial planets in habitable zones We have investigated obliquity variations of possible terrestrialplanets in habitable zones (HZs) perturbed by a giant planet(s) inextrasolar planetary systems. All the extrasolar planets so fardiscovered are inferred to be jovian-type gas giants. However,terrestrial planets could also exist in extrasolar planetary systems. Inorder for life, in particular for land-based life, to evolve and surviveon a possible terrestrial planet in an HZ, small obliquity variations ofthe planet may be required in addition to its orbital stability, becauselarge obliquity variations would cause significant climate change. It isknown that large obliquity variations are caused by spin-orbitresonances where the precession frequency of the planet's spin nearlycoincides with one of the precession frequencies of the ascending nodeof the planet's orbit. Using analytical expressions, we evaluated theobliquity variations of terrestrial planets with prograde spins in HZs.We found that the obliquity of terrestrial planets suffers largevariations when the giant planet's orbit is separated by several Hillradii from an edge of the HZ, in which the orbits of the terrestrialplanets in the HZ are marginally stable. Applying these results to theknown extrasolar planetary systems, we found that about half of thesesystems can have terrestrial planets with small obliquity variations(smaller than 10°) over their entire HZs. However, the systems withboth small obliquity variations and stable orbits in their HZs are only1/5 of known systems. Most such systems are comprised of short-periodgiant planets. If additional planets are found in the known planetarysystems, they generally tend to enhance the obliquity variations. On theother hand, if a large/close satellite exists, it significantly enhancesthe precession rate of the spin axis of a terrestrial planet and islikely to reduce the obliquity variations of the planet. Moreover, if aterrestrial planet is in a retrograde spin state, the spin-orbitresonance does not occur. Retrograde spin, or a large/close satellitemight be essential for land-based life to survive on a terrestrialplanet in an HZ.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.
| The Radiometric Bode's Law and Extrasolar Planets We predict the radio flux densities of the extrasolar planets in thecurrent census, making use of an empirical relation-the radiometricBode's law-determined from the five ``magnetic'' planets in the solarsystem (the Earth and the four gas giants). Radio emission from theseplanets results from solar wind-powered electron currents depositingenergy in the magnetic polar regions. We find that most of the knownextrasolar planets should emit in the frequency range 10-1000 MHz and,under favorable circumstances, have typical flux densities as large as 1mJy. We also describe an initial, systematic effort to search for radioemission in low radio frequency images acquired with the Very LargeArray (VLA). The limits set by the VLA images (~300 mJy) are consistentwith, but do not provide strong constraints on, the predictions of themodel. Future radio telescopes, such as the Low Frequency Array and theSquare Kilometer Array, should be able to detect the known extrasolarplanets or place austere limits on their radio emission. Planets withmasses much lower than those in the current census will probably radiatebelow 10 MHz and will require a space-based array.
| Spin-Orbit Evolution of Short-Period Planets The negligible eccentricity of all extrasolar planets with periods lessthan 6 days can be accounted for by dissipation of tidal disturbanceswithin their envelopes that are induced by their host stars. In theperiod range of 7-21 days, planets with circular orbits coexist withplanets with eccentric orbits. These are referred to as the borderlineplanets. We propose that this discrepancy can be attributed to thevariation in spin-down rates of young stars. In particular, prior tospin-down, dissipation of a planet's tidal disturbance within theenvelope of a sufficiently rapidly spinning star can excite eccentricitygrowth and, for a more slowly spinning star, at least reduce theeccentricity-damping rate. In contrast, tidal dissipation within theenvelope of a slowly spinning low-mass mature star can enhance theeccentricity-damping process. On the basis of these results, we suggestthat short-period planets around relatively young stars may have a muchlarger dispersion in eccentricity than those around mature stars. Wealso suggest that because the rate of angular momentum loss from G and Kdwarfs via stellar winds is much faster than the tidal transfer ofangular momentum between themselves and their very short (3-4 days)period planets, they cannot establish a dynamical configuration in whichthe stellar and planetary spins are approximately parallel andsynchronous with the orbital frequency. In principle, however, suchconfigurations may be established for planets (around G and K dwarfs)with orbital periods of up to several weeks. In contrast to G and Kdwarfs, the angular momentum loss due to stellar winds is much weaker inF dwarfs. It is therefore possible for synchronized short-period planetsto exist around such stars. The planet around Tau Boo is one suchexample.
| Are beryllium abundances anomalous in stars with giant planets? In this paper we present beryllium (Be) abundances in a large sample of41 extra-solar planet host stars, and for 29 stars without any knownplanetary-mass companion, spanning a large range of effectivetemperatures. The Be abundances were derived through spectral synthesisdone in standard Local Thermodynamic Equilibrium, using spectra obtainedwith various instruments. The results seem to confirm that overall,planet-host stars have ``normal'' Be abundances, although a small, butnot significant, difference might be present. This result is discussed,and we show that this difference is probably not due to any stellar``pollution'' events. In other words, our results support the idea thatthe high-metal content of planet-host stars has, overall, a``primordial'' origin. However, we also find a small subset ofplanet-host late-F and early-G dwarfs that might have higher thanaverage Be abundances. The reason for the offset is not clear, and mightbe related either to the engulfment of planetary material, to galacticchemical evolution effects, or to stellar-mass differences for stars ofsimilar temperature.Based on observations collected with the VLT/UT2 Kueyen telescope(Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observingruns 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the WilliamHerschel and Nordic Optical Telescopes, operated on the island of LaPalma by the Isaac Newton Group and jointly by Denmark, Finland,Iceland, and Norway, respectively, in the Spanish Observatorio del Roquede los Muchachos of the Instituto de Astrofísica de Canarias.
| A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org
| C, S, Zn and Cu abundances in planet-harbouring stars We present a detailed and uniform study of C, S, Zn and Cu abundances ina large set of planet host stars, as well as in a homogeneous comparisonsample of solar-type dwarfs with no known planetary-mass companions.Carbon abundances were derived by EW measurement of two C I opticallines, while spectral syntheses were performed for S, Zn and Cu. Weinvestigated possible differences in the behaviours of the volatiles C,S and Zn and in the refractory Cu in targets with and without knownplanets in order to check possible anomalies due to the presence ofplanets. We found that the abundance distributions in stars withexoplanets are the high [Fe/H] extensions of the trends traced by thecomparison sample. All volatile elements we studied show [X/Fe] trendsdecreasing with [Fe/H] in the metallicity range -0.8< [Fe/H] <0.5, with significantly negative slopes of -0.39±0.04 and-0.35±0.04 for C and S, respectively. A comparison of ourabundances with those available in the literature shows good agreementin most cases.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and with the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, at the Paranal Observatory, ESO (Chile), using the UVESspectrograph at the VLT/UT2 Kueyen telescope, and with the UES and SARGspectrographs at the 4-m William Hershel Telescope (WHT) and at the3.5-m TNG telescope, respectively, both at La Palma (Canary Islands).Tables 4-16 are only available in electronic form athttp://www.edpsciences.org
| Beryllium anomalies in solar-type field stars We present a study of beryllium (Be) abundances in a large sample offield solar-type dwarfs and sub-giants spanning a large range ofeffective temperatures. The Be abundances, computed using a very uniformset of stellar parameters and near-UV spectra obtained with 3 differentinstruments, are used to study the depletion of this light element. Theanalysis shows that Be is severely depleted for F stars, as expected bythe light-element depletion models. However, we also show that berylliumabundances decrease with decreasing temperature for stars cooler than6000 K, a result that cannot be explained by current theoreticalmodels including rotational mixing, but that is, at least in part,expected from the models that take into account internal wave physics.In particular, the light element abundances of the coolest and youngeststars in our sample suggest that Be, as well as lithium (Li), hasalready been burned early during their evolution. Furthermore, we findstrong evidence for the existence of a Be-gap for solar-temperaturestars. The analysis of Li and Be abundances in the sub-giants of oursample also shows the presence of one case that has still detectableamounts of Li, while Be is severely depleted. Finally, we compare thederived Be abundances with Li abundances derived using the same set ofstellar parameters. This gives us the possibility to explore thetemperatures for which the onset of Li and Be depletion occurs.Based on observations collected with the VLT/UT2 Kueyen telescope(Paranal Observatory, ESO, Chile) using the UVES spectrograph (Observingruns 66.C-0116 A, 66.D-0284 A, and 68.C-0058 A), and with the WilliamHerschel and Nordic Optical Telescopes, operated at the island of LaPalma by the Isaac Newton Group and jointly by Denmark, Finland,Iceland, and Norway, respectively, in the Spanish Observatorio del Roquede los Muchachos of the Instituto de Astrofísica de Canarias.
| The Top Ten solar analogs in the ELODIE library Several solar analogs have been identified in the library of highresolution stellar spectra taken with the echelle spectrograph ELODIE. Apurely differential method has been used, based on the χ2comparison of a large number of G dwarf spectra to 8 spectra of the Sun,taken on the Moon and Ceres. HD 146233 keeps its status of closest eversolar twin (Porto de Mello & da Silva \cite{PMDS97}). Some otherspectroscopic analogs have never been studied before, while the twoplanet-host stars HD 095128 and HD 186427 are also part of theselection. The fundamental parameters found in the literature for thesestars show a surprising dispersion, partly due to the uncertaintieswhich affect them. We discuss the advantages and drawbacks ofphotometric and spectroscopic methods to search for solar analogs andconclude that they have to be used jointly to find real solar twins.Based on observations made at the Observatoire de Haute-Provence(France).
|
Yeni bir Makale Öner
Ýlgili Baðlantýlar
Yeni Bir Baðlantý Öner
sonraki gruplarýn üyesi:
|
Gözlemler ve gökölçümü verileri
Takýmyýldýz: | Kugu |
Sað Açýklýk: | 19h46m58.11s |
Yükselim: | +34°25'10.3" |
Görünürdeki Parlaklýk: | 7.841 |
Uzaklýk: | 47.916 parsek |
özdevim Sað Açýklýk: | 142.5 |
özdevim Yükselim: | -126.3 |
B-T magnitude: | 8.635 |
V-T magnitude: | 7.907 |
Kataloglar ve belirtme:
|