Оглавление
Изображения
Загрузить ваше изображение
DSS Images Other Images
Публикации по объекту
Spectroscopic parameters for a sample of metal-rich solar-type stars Aims.To date, metallicity is the only parameter of a star that appearsto clearly correlate with the presence of planets and their properties.To check for new correlations between stars and the existence of anorbiting planet, we determine accurate stellar parameters for severalmetal-rich solar-type stars. The purpose is to fill the gap of thecomparison sample presented in previous works in the high metal-contentregime. Methods: .The stellar parameters were determined using anLTE analysis based on equivalent widths (EW) of iron lines and byimposing excitation and ionization equilibrium. We also present a firststep in determining these stellar parameters in an automatic manner byusing the code DAOSPEC for the EW determination. Results:.Accurate stellar parameters and metallicities are obtained for oursample composed of 64 high metal-content stars not known to harbor anyplanet. This sample will in the future give us the possibility of betterexploring the existence of differences in the chemical abundancesbetween planet-host stars and stars without known planets in themetal-rich domain. We also report stellar parameters for some recentlydiscovered planet-host stars. Finally, we present an empiricalcalibration for DAOSPEC based on the comparison between its EWmeasurements and the standard "hand made" measurements for the FEROSsample presented in this paper.
| Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Extrasolar planets around HD 196050, HD 216437 and HD 160691 We report precise Doppler measurements of the stars HD 216437, HD 196050and HD 160691 obtained with the Anglo-Australian Telescope using theUCLES spectrometer together with an iodine cell as part of theAnglo-Australian Planet Search. Our measurements reveal periodicKeplerian velocity variations that we interpret as evidence for planetsin orbit around these solar type stars. HD 216437 has a period of 1294+/- 250 d, a semi-amplitude of 38 +/- 3 m s-1 and aneccentricity of 0.33 +/- 0.09. The minimum (M sin i) mass of thecompanion is 2.1 +/- 0.3 MJUP and the semi-major axis is 2.4+/- 0.5 au. HD 196050 has a period of 1300 +/- 230 d, a semi-amplitudeof 49 +/- 8 m s-1 and an eccentricity of 0.19 +/- 0.09. Theminimum mass of the companion is 2.8 +/- 0.5 MJUP and thesemi-major axis is 2.4 +/- 0.5 au. We also report further observationsof the metal-rich planet bearing star HD 160691. Our new solutionconfirms the previously reported planet and shows a trend indicating asecond, longer-period companion. These discoveries add to the growingnumbers of mildly eccentric, long-period extrasolar planets aroundmetal-rich Sun-like stars.
| Echelle spectroscopy of Caii HK activity in Southern Hemisphere planet search targets We present the results of ultraviolet echelle spectroscopy of a sampleof 59 F, G, K and M stars from the Anglo-Australian Planet Search targetlist. Caii activity indices, which are essential in the interpretationof planet detection claims, have been determined for these stars andplaced on the Mount Wilson R 'HK system.
| Photometric Abundances for G Dwarfs: A Cautionary Tale Analysis of cluster and field star uvby data demonstrates the existenceof a previously undetected discrepancy in a widely used photometricmetallicity calibration for G dwarfs. The discrepancy is systematic andstrongly color dependent, reducing the estimated [Fe/H] for stars above[Fe/H]~-0.2 by between +0.1 and +0.4 dex and creating a deficit ofmetal-rich stars among dwarfs of mid G and later spectral type. Thesource of the problem, triggered for stars with b-y greater than about0.47, appears to be an enhanced metallicity dependence for thec1 index that increases as temperature declines. The linkbetween c1, normally a surface gravity indicator, andmetallicity produces two secondary effects. The deficit in thephotometric abundance for a cool dwarf is partially compensated by somedegree of evolution off the main sequence, and cool dwarfs withmetallicities significantly above the Hyades are found to havec1 indices that classify them as giants. The potential impactof the problem on stellar population studies is discussed.
| Mining the Metal-rich Stars for Planets We examine the correlation between stellar metallicity and the presenceof short-period planets. It appears that approximately 1% of dwarf starsin the solar neighborhood harbor short-period planets characterized bynear-circular orbits and orbital periods P<20 days. However, amongthe most metal-rich stars (defined as having [Fe/H]>0.2 dex), itappears that the fraction increases to 10%. Using the Hipparcos databaseand the Hauck & Mermilliod compilation of Strömgren uvbyphotometry, we identify a sample of 206 metal-rich stars of spectraltype K, G and F which have an enhanced probability of harboringshort-period planets. Many of these stars would be excellent candidatesfor addition to radial velocity surveys. We have searched the Hipparcosepoch photometry for transiting planets within our 206 star catalog. Wefind that the quality of the Hipparcos data is not high enough to permitunambiguous transit detections. It is, however, possible to identifycandidate transit periods. We then discuss various ramifications of thestellar metallicity-planet connection. First, we show that there ispreliminary evidence for increasing metallicity with increasing stellarmass among known planet-bearing stars. This trend can be explained by ascenario in which planet-bearing stars accrete an average of 30M⊕ of rocky material after the gaseous protoplanetarydisk phase has ended. We present dynamical calculations which suggestthat a survey of metallicities of spectroscopic binary stars can be usedto understand the root cause of the stellar metallicity-planetconnection.
|
Добавить новую статью
Внешние ссылки
- - Внешних ссылок не найдено -
Добавить внешнюю ссылку
Группы:
|
Наблюдательные данные и астрометрия
Созвездие: | Тукан |
Прямое восхождение: | 01h10m47.22s |
Склонение: | -66°11'17.4" |
Видимая звёздная величина: | 8.034 |
Расстояние: | 35.881 парсек |
Собственное движение RA: | 112 |
Собственное движение Dec: | -120.9 |
B-T magnitude: | 9.108 |
V-T magnitude: | 8.123 |
Каталоги и обозначения:
|