내용
사진
사진 업로드
DSS Images Other Images
관련 글
Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes To understand the formation and evolution of solar-type stars in thesolar neighborhood, we need to measure their stellar parameters to highaccuracy. We present a catalogue of accurate stellar parameters for 451stars that represent the HARPS Guaranteed Time Observations (GTO)“high precision” sample. Spectroscopic stellar parameterswere measured using high signal-to-noise (S/N) spectra acquired with theHARPS spectrograph. The spectroscopic analysis was completed assumingLTE with a grid of Kurucz atmosphere models and the recent ARES code formeasuring line equivalent widths. We show that our results agree wellwith those ones presented in the literature (for stars in common). Wepresent a useful calibration for the effective temperature as a functionof the index color B-V and [Fe/H]. We use our results to study themetallicity-planet correlation, namely for very low mass planets. Theresults presented here suggest that in contrast to their joviancouterparts, neptune-like planets do not form preferentially aroundmetal-rich stars. The ratio of jupiter-to-neptunes is also an increasingfunction of stellar metallicity. These results are discussed in thecontext of the core-accretion model for planet formation.Based on observations collected at La Silla Observatory, ESO, Chile,with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)). FullTables 1 and 3 are only available in electronic form at the CDS vianonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/373
| An activity catalogue of southern stars We have acquired high-resolution echelle spectra of 225 F6-M5 type starsin the Southern hemisphere. The stars are targets or candidates to betargets for the Anglo-Australian Planet Search. CaII H& K line coreswere used to derive activity indices for all of these objects. Theindices were converted to the Mt. Wilson system of measurements andlogR'HK values determined. A number of these stars had nopreviously derived activity indices. In addition, we have also includedthe stars from Tinney et al. using our Mt. Wilson calibration. Theradial-velocity instability (also known as jitter) level was determinedfor all 21 planet-host stars in our data set. We find the jitter to beat a level considerably below the radial-velocity signatures in all butone of these systems. 19 stars from our sample were found to be active(logR'HK > -4.5) and thus have high levels of jitter.Radial-velocity analysis for planetary companions to these stars shouldproceed with caution.
| Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| Can Life Develop in the Expanded Habitable Zones around Red Giant Stars? We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5
|
새 글 등록
관련 링크
새 링크 등록
다음 그룹에 속해있음:
|
관측 및 측정 데이터
천체목록:
|