Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

HD 153882


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

A catalog of stellar magnetic rotational phase curves
Magnetized stars usually exhibit periodic variations of the effective(longitudinal) magnetic field Be caused by their rotation. Wepresent a catalog of magnetic rotational phase curves, Be vs.the rotational phase φ, and tables of their parameters for 136stars on the main sequence and above it. Phase curves were obtained bythe least squares fitting of sine wave or double wave functions to theavailable Be measurements, which were compiled from theexisting literature. Most of the catalogued objects are chemicallypeculiar A and B type stars (127 stars). For some stars we also improvedor determined periods of their rotation. We discuss the distribution ofparameters describing magnetic rotational phase curves in our sample.All tables and Appendix A are only available in electronic form athttp://www.edpsciences.org

Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars
This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org

Rotational Velocities of B Stars
We measured the projected rotational velocities of 1092 northern B starslisted in the Bright Star Catalogue (BSC) and calibrated them againstthe 1975 Slettebak et al. system. We found that the published values ofB dwarfs in the BSC average 27% higher than those standards. Only 0.3%of the stars have rotational velocities in excess of two-thirds of thebreakup velocities, and the mean velocity is only 25% of breakup,implying that impending breakup is not a significant factor in reducingrotational velocities. For the B8-B9.5 III-V stars the bimodaldistribution in V can be explained by a set of slowly rotating Ap starsand a set of rapidly rotating normal stars. For the B0-B5 III-V starsthat include very few peculiar stars, the distributions in V are notbimodal. Are the low rotational velocities of B stars due to theoccurrence of frequent low-mass companions, planets, or disks? Therotational velocities of giants originating from late B dwarfs areconsistent with their conservation of angular momentum in shells.However, we are puzzled by why the giants that originate from the earlyB dwarfs, despite having 3 times greater radii, have nearly the samerotational velocities. We find that all B-type primaries in binarieswith periods less than 2.4 days have synchronized rotational and orbitalmotions; those with periods between 2.4 and 5.0 days are rotating withina factor 2 of synchronization or are ``nearly synchronized.'' Thecorresponding period ranges for A-type stars are 4.9 and 10.5 days, ortwice as large. We found that the rotational velocities of the primariesare synchronized earlier than their orbits are circularized. The maximumorbital period for circularized B binaries is 1.5 days and for Abinaries is 2.5 days. For stars of various ages from 107.5 to1010.2 yr the maximum circularized periods are a smoothexponential function of age.

A statistical analysis of the magnetic structure of CP stars
We present the results of a statistical study of the magnetic structureof upper main sequence chemically peculiar stars. We have modelled asample of 34 stars, assuming that the magnetic morphology is describedby the superposition of a dipole and a quadrupole field, arbitrarilyoriented. In order to interpret the modelling results, we haveintroduced a novel set of angles that provides one with a convenient wayto represent the mutual orientation of the quadrupolar component, thedipolar component, and the rotation axis. Some of our results aresimilar to what has already been found in previous studies, e.g., thatthe inclination of the dipole axis to the rotation axis is usually largefor short-period stars and small for long-period ones - see Landstreet& Mathys (\cite{Landstreet2000}). We also found that forshort-period stars (approximately P<10 days) the plane containing thetwo unit vectors that characterise the quadrupole is almost coincidentwith the plane containing the stellar rotation axis and the dipole axis.Long-period stars seem to be preferentially characterised by aquadrupole orientation such that the planes just mentioned areperpendicular. There is also some loose indication of a continuoustransition between the two classes of stars with increasing rotationalperiod.

Multiplicity among chemically peculiar stars. II. Cool magnetic Ap stars
We present new orbits for sixteen Ap spectroscopic binaries, four ofwhich might in fact be Am stars, and give their orbital elements. Fourof them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. Thetwelve other stars are: HD 9996, HD 12288, HD 40711, HD 54908, HD 65339,HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD216533. Rough estimates of the individual masses of the components of HD65339 (53 Cam) are given, combining our radial velocities with theresults of speckle interferometry and with Hipparcos parallaxes.Considering the mass functions of 74 spectroscopic binaries from thiswork and from the literature, we conclude that the distribution of themass ratio is the same for cool Ap stars and for normal G dwarfs.Therefore, the only differences between binaries with normal stars andthose hosting an Ap star lie in the period distribution: except for thecase of HD 200405, all orbital periods are longer than (or equal to) 3days. A consequence of this peculiar distribution is a deficit of nulleccentricities. There is no indication that the secondary has a specialnature, like e.g. a white dwarf. Based on observations collected at theObservatoire de Haute-Provence (CNRS), France.Tables 1 to 3 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/151Appendix B is only available in electronic form athttp://www.edpsciences.org

Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i
This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897

Are Stellar Rotational Axes Distributed Randomly?
Stellar line widths yield values of Vsini, but the equatorial rotationalvelocities, V, cannot be determined for individual stars withoutknowledge of their inclinations, i, relative to the lines of sight. Forlarge numbers of stars we usually assume random orientations ofrotational axes to derive mean values of V, but we wonder whether thatassumption is valid. Individual inclinations can be derived only inspecial cases, such as for eclipsing binaries where they are close to90° or for chromospherically active late-type dwarfs or spotted(e.g., Ap) stars where we have independent information about therotational periods. We consider recent data on 102 Ap stars for whichCatalano & Renson compiled rotational periods from the literatureand Abt & Morrell (primarily) obtained measures of Vsini. We findthat the rotational axes are oriented randomly within the measuringerrors. We searched for possible dependence of the inclinations onGalactic latitude or longitude, and found no dependence.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

High-precision magnetic field measurements of Ap and Bp stars
In this paper we describe a new approach for measuring the meanlongitudinal magnetic field and net linear polarization of Ap and Bpstars. As was demonstrated by Wade et al., least-squares deconvolution(LSD; Donati et al.) provides a powerful technique for detecting weakStokes V, Q and U Zeeman signatures in stellar spectral lines. Thesesignatures have the potential to apply strong new constraints to modelsof stellar magnetic field structure. Here we point out two importantuses of LSD Stokes profiles. First, they can provide very precisedeterminations of the mean longitudinal magnetic field. In particular,this method allows one frequently to obtain 1σ error bars betterthan 50G, and smaller than 20G in some cases. This method is applicableto both broad- and sharp-lined stars, with both weak and strong magneticfields, and effectively redefines the quality standard of longitudinalfield determinations. Secondly, LSD profiles can in some cases provide ameasure of the net linear polarization, a quantity analogous to thebroad-band linear polarization recently used to derive detailed magneticfield models for a few stars (e.g. Leroy et al.). In this paper wereport new high-precision measurements of the longitudinal fields of 14magnetic Ap/Bp stars, as well as net linear polarization measurementsfor four of these stars, derived from LSD profiles.

Spectropolarimetric measurements of magnetic Ap and Bp stars in all four Stokes parameters
In this paper we begin an exploration of the potential of spectral lineZeeman linear and circular polarization signatures for reconstructingthe surface magnetic field topologies of magnetic Ap and Bp stars. Wepresent our first observational results, which include the very firsthigh-quality measurements of stellar Zeeman spectral line linearpolarization ever obtained. Using the new MuSiCoS spectropolarimeter atthe Pic du Midi Observatory, over 360 spectra were obtained, in circularor linear polarization, of 14 magnetic Ap/Bp stars and six calibrationobjects. Zeeman circular polarization signatures are detected in mostsingle lines in essentially all spectra of magnetic Ap stars, withtypical relative amplitudes of a few per cent. Linear polarizationZeeman signatures are unambiguously detected in individual strong,magnetically sensitive lines in outstanding spectra of five objects.However, linear polarization is generally not detected in individualstrong lines in our much more common moderate signal-to-noise ratio(S/N) spectra, and is essentially never detected in weak lines. In orderto overcome the limitations imposed by the S/N ratio and the inherentweakness of linear polarization Zeeman signatures, we exploit theinformation contained in the many lines in our spectra by using theleast-squares deconvolution (LSD) technique. Using LSD, mean linearpolarization signatures are consistently detected within the spectrallines of 10 of our 14 programme stars. These mean linear polarizationsignatures are very weak, with typical amplitudes 10-20 times smallerthan those of the associated mean circular polarization signatures. For11 stars full or partial rotational phase coverage has been obtained inthe Stokes I and V or the Stokes I, V, Q and U parameters. Therotational modulation of the LSD mean signatures is reported for theseobjects. Measurements of the longitudinal field and net linearpolarization obtained from these LSD profiles show they are consistentwith existing comparable data, and provide constraints on magnetic fieldmodels which are at least as powerful as any other data presentlyavailable. To illustrate the new information available from these datasets, we compare for four stars the observed Stokes profiles with thosepredicted by magnetic field models published previously in theliterature. Important and sometimes striking differences between theobserved and computed profiles indicate that the Zeeman signaturespresented here contain important new information about the structure ofthe magnetic fields of Ap and Bp stars capable of showing thelimitations of the best magnetic field models currently available.

Magnetic AP Stars in the Hertzsprung-Russell Diagram
The evolutionary state of magnetic Ap stars is rediscussed using therecently released Hipparcos data. The distribution of the magnetic Apstars of mass below 3 Msolar in the H-R diagram differs fromthat of the normal stars in the same temperature range at a high levelof significance. Magnetic stars are concentrated toward the center ofthe main-sequence band. This is shown in two forms of the H-R diagram:one where logL is plotted against logTeff and a version moredirectly tied to the observed quantities, showing the astrometry-basedluminosity (Arenou & Luri) against the (B2-G)0 index ofGeneva photometry. In particular, it is found that magnetic fieldsappear only in stars that have already completed at least approximately30% of their main-sequence lifetime. No clear picture emerges as to thepossible evolution of the magnetic field across the main sequence. Hintsof some (loose) relations between magnetic field strength and otherstellar parameters are found: stars with shorter periods tend to havestronger fields, as do higher temperature and higher mass stars. Amarginal trend of the magnetic flux to be lower in more slowly rotatingstars may possibly be seen as suggesting a dynamo origin for the field.No correlation between the rotation period and the fraction of themain-sequence lifetime completed is observed, indicating that the slowrotation in these stars must already have been achieved before theybecame observably magnetic. Based on data from the ESA Hipparcossatellite and on observations collected at the European SouthernObservatory (La Silla, Chile; ESO programs Nos. 43.7-004, 44.7-012,49.7-030, 50.7-067, 51.7-041, 52.7-063, 53.7-028, 54.E-0416, and55.E-0751), at the Observatoire de Haute-Provence (Saint-Michell'Observatoire, France), at Kitt Peak National Observatory, and at theCanada-France-Hawaii Telescope.

On the effective temperatures, surface gravities, and optical region fluxes of the CP stars
We determined effective temperatures and surface gravities for 17magnetic Chemically Peculiar (mCP) stars by comparing optical regionspectrophotometry and Hγ profiles with the predictions of ATLAS9model atmospheres. Although solar composition models can fit the energydistributions of the normal and many Mercury-Manganese stars, theycannot match the optical energy distributions of the mCP stars,especially the lambda 5200 broad, continuum regions. The role ofmetallicity and microturbulence to provide appropriate energydistributions which fit those observed for the mCP stars isinvestigated. Using metal-rich models with the opacity distributionfunctions for microturbulent velocities of 4 and 8 km s-1,their lambda 5200 broad, continuum features are often fit as part ofthis process. For some stars it is impossible to fit simultaneously boththis feature and the line blanketing in the Hγ region. Thissuggests that this continuum feature is produced by elements other thanthose which contribute most of the general line blanketing. A systematicdifference in the temperatures found by the photometric andspectrophotometric approaches is discovered for the hotter mCP stars. Aninvestigation of 10 Mercury-Manganese stars shows a similar effect. Thismay be due to the photospheric compositions becoming less solar withincreasing temperature.

Modelling of magnetic fields of CP stars. II. Analysis of longitudinal field, crossover, and quadratic field observations
In recent years, the introduction and systematic application of newdiagnostic techniques has enormously increased the opportunities toinvestigate magnetic fields of chemically peculiar (CP) stars. Toapproach the problem of modelling these fields, in previous papers weset up a theory aimed at describing the magnetic configuration due tothe superposition of a dipole with an arbitrary quadrupole. The presentwork is a first application of this theory to spectro-polarimetricobservations of Stokes I and V. We have attempted to model nine magneticCP stars by analysing their curves of longitudinal field, crossover andquadratic field. We found that the classical dipolar model is adequatein only one case, while in six cases it should definitely be ruled out.For two stars a specific dipole plus quadrupole model has beenrecovered.

IOTA Cas: Multi-element Doppler imaging and magnetic field geometry
In order to clarify the role of the magnetic field in generatingabundance inhomogeneities in the atmospheres of Ap stars, we present newabundance Doppler images and an approximate magnetic field geometry forthe Ap star iota Cas.

Doppler imaging of AP stars
Doppler imaging, a technique which inverts spectral line profilevariations of an Ap star into a two-dimensional abundance maps, providesnew observational constraints on diffusion mechanism in the presence ofa global magnetic field. A programme is presented here with the aim toobtain abundance distributions of at least five elements on each star,in order to study how different diffusion processes act under influenceof a stellar magnetic field. The importance of this multi-elementapproach is demonstrated, by presenting the abundance maps of helium,magnesium, silicon, chromium and iron for the magnetic B9pSi star CUVriginis.

On the near infrared variability of chemically peculiar stars
Some CP stars have recently been discovered by Catalano et al. to bevariable also in the near infrared, although with smaller amplitudesthan in the visible. Hence an observational campaign was started inwhich the infrared light variability of a number of CP2 and CP4 starshas been investigated at the ESO-La Silla Observatory in the bands J, H,and K. As a general result, infrared variations show the same behaviorin all three filters but amplitudes are smaller than in the visible.

On the HIPPARCOS photometry of chemically peculiar B, A, and F stars
The Hipparcos photometry of the Chemically Peculiar main sequence B, A,and F stars is examined for variability. Some non-magnetic CP stars,Mercury-Manganese and metallic-line stars, which according to canonicalwisdom should not be variable, may be variable and are identified forfurther study. Some potentially important magnetic CP stars are noted.Tables 1, 2, and 3 are available only in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Near infrared light variations of chemically peculiar stars. The SrCrEu stars
Twenty magnetic Chemically Peculiar (CP2) stars of the SrCrEu subgroupmostly brighter than the 7.5 visual magnitude have been investigated inthe near infrared at 1.25, 1.6 and 2.2 mu . The stars HD 3980, HD 24712,HD 49976, HD 83368, HD 96616, HD 98088, HD 118022, HD 125248, HD 148898,HD 203006, and HD 220825 have been found to be variable in the infraredwith the same period as the visible light, spectrum, and magnetic fieldvariations. HD 221760 is also variable with a period of 12.45 days,which has to be confirmed. The stars HD 72968, HD 111133, HD 126515, HD153882, and HD 164258 do show some hint of variability, although thedata are too few. Infrared variability has been detected for the firsttime in the stars HD 101065, and HD 206088, which have not yet beenconsidered as variable. No variability has been detected for the star HD137949 within a time scale of the order of ten days. Based onobservations collected at the European Southern Observatory, La SillaChile.

The observed periods of AP and BP stars
A catalogue of all the periods up to now proposed for the variations ofCP2, CP3, and CP4 stars is presented. The main identifiers (HD and HR),the proper name, the variable-star name, and the spectral type andpeculiarity are given for each star as far as the coordinates at 2000.0and the visual magnitude. The nature of the observed variations (light,spectrum, magnetic field, etc.) is presented in a codified way. Thecatalogue is arranged in three tables: the bulk of the data, i.e. thosereferring to CP2, CP3, and CP4 stars, are given in Table 1, while thedata concerning He-strong stars are given in Table 2 and those foreclipsing or ellipsoidal variables are collected in Table 3. Notes arealso provided at the end of each table, mainly about duplicities. Thecatalogue contains data on 364 CP stars and is updated to 1996, October31. This research has made use of the SIMBAD database, operated at CDS,Strasbourg, France.

The HR-diagram from HIPPARCOS data. Absolute magnitudes and kinematics of BP - AP stars
The HR-diagram of about 1000 Bp - Ap stars in the solar neighbourhoodhas been constructed using astrometric data from Hipparcos satellite aswell as photometric and radial velocity data. The LM method\cite{luri95,luri96} allows the use of proper motion and radial velocitydata in addition to the trigonometric parallaxes to obtain luminositycalibrations and improved distances estimates. Six types of Bp - Apstars have been examined: He-rich, He-weak, HgMn, Si, Si+ and SrCrEu.Most Bp - Ap stars lie on the main sequence occupying the whole width ofit (about 2 mag), just like normal stars in the same range of spectraltypes. Their kinematic behaviour is typical of thin disk stars youngerthan about 1 Gyr. A few stars found to be high above the galactic planeor to have a high velocity are briefly discussed. Based on data from theESA Hipparcos astrometry satellite and photometric data collected in theGeneva system at ESO, La Silla (Chile) and at Jungfraujoch andGornergrat Observatories (Switzerland). Tables 3 and 4 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Spectropolarimetry of magnetic stars. VI. Longitudinal field, crossover and quadratic field: New measurements
New determinations of the mean longitudinal magnetic field, of thecrossover, and of the mean quadratic magnetic field of Ap stars arepresented. They are based on spectra recorded simultaneously in bothcircular polarizations at ESO with the CASPEC spectrograph fed by the3.6 m telescope. This paper discusses 95 observations of 44 stars. Amajor result of this study is the discovery that HD 137509 has apredominantly quadrupolar magnetic field, a strucuture previously foundin only a couple of stars. Improvement or revision of the determinationof the rotation period has been achieved for 3 stars. The stars studiedin this work include 14 rapidly oscillating Ap stars (for 6 of which noprevious attempt to detect a magnetic field had ever been made) and 21Ap stars with spectral lines resolved into their magnetically splitcomponents when observed at high enough dispersion in unpolarized light(for 9 of these stars, no determination of the longitudinal field hadbeen performed before). The observations discussed in this paper havebeen performed between 1989 and 1994, a period during which CASPEC andits Zeeman analyzer have progressively undergone various configurationchanges. The results reported here demonstrate that the polarimetricperformance of the instrument has remained unaltered through thesemodifications. Thanks to the latter, the achieved resolving power wasincreased, which resulted in improved magnetic measurement accuracies.Based on observations collected at the European Southern Observatory (LaSilla, Chile; ESO programmes Nos. 47.7-045 and 49.7-029).

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The ROSAT all-sky survey catalogue of optically bright OB-type stars.
For the detailed statistical analysis of the X-ray emission of hot starswe selected all stars of spectral type O and B listed in the Yale BrightStar Catalogue and searched for them in the ROSAT All-Sky Survey. Inthis paper we describe the selection and preparation of the data andpresent a compilation of the derived X-ray data for a complete sample ofbright OB stars.

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Linear polarimetry of AP stars. V. A general catalogue of measurements.
A systematic program of broadband linear polarimetry, bearing on 55 Apstars, has been developed during the 4 last years, at the Pic du MidiObservatory. While separate data have been already published, we presentin this paper a complete catalogue of our observational material,including more than 400 measurements. We complement these data withanother 100 measurements, obtained previously by other authors, so as toget a synthetic view of the phenomenon. Most of the observations havebeen dedicated to a small number (15) of stars, which show conspicuouschanges of the linear polarization, so that it is possible to knowaccurately the time variation of the Stokes parameters: we expect thatthese new data will really improve our knowledge of the magneticconfiguration, after a proper analysis which is currently beingdeveloped. For the other 40 stars, the polarization is either too small,or strongly contaminated by the interstellar polarization, so thatbroadband polarimetry is not very effective. Anyway, this firstsystematic investigation on the linear polarization of Ap stars will bea useful starting point for future measurements which should be madewith higher spectral resolution. Finally, our measurements have providednew determinations of the rotation period for several stars.

Radio continuum emission from stars: a catalogue update.
An updated version of my catalogue of radio stars is presented. Somestatistics and availability are discussed.

Spectropolarimetry of magnetic stars. V. The mean quadratic magnetic field.
Systematic determinations of the mean quadratic magnetic field of Apstars have been performed for the first time. The mean quadraticmagnetic field (or, in short, the quadratic field) is the square root ofthe sum of the mean square magnetic field modulus and of the mean squarelongitudinal magnetic field. The latter are averages over the visiblestellar disk of the square of, respectively, the modulus of the magneticfield and its component along the line of sight. These averages areweighted by the local emergent line intensities. The quadratic field isdiagnosed from the study of the magnetic broadening of the stellarspectral lines as observed in unpolarized light, through thecharacterization of the widths of the lines by the second-order momentsof their profiles (in the Stokes parameter I) about their centre. Thetheoretical basis of the interpretation of these moments in terms ofmagnetic field and the strategy followed in the analysis are presented.It is shown that this analysis yields, as a by-product, the projectedequatorial velocity v_e_sini of the studied stars. Observations of asample of 29 stars are analyzed. For 22 of them, meaningful values orupper limits of the quadratic field can be determined. The lower limitof detection of the quadratic fields, set by the spectral resolution ofthe observations, is of the order of 5 kG. The observed quadratic fieldsrange from this value up to 37 kG, in the star HD 137509. The magneticfield of this star is likely the second strongest known field in Apstars. Quadratic field values derived for stars where resolvedmagnetically split lines are observed in higher-dispersion spectra areconsistent with the values of the mean field modulus measured in thosestars from the line splitting. For the stars of the sample repeatedlyobserved through their rotation cycle, the variations of the quadraticfield are well represented by a cosine with the rotation frequency ofthe star, or by the superposition of such a cosine and of a cosine withtwice that frequency. However, it appears that it is essential to have alarge number of observations distributed sufficiently uniformly andsufficiently densely over the rotation phases to determine unambiguouslythe shape of the variations. The extrema of the quadratic field tend tooccur at phases close to those of the extrema of the longitudinal field,but in some stars, the two quantities definitely vary out of phase. Theratio between the maximum and the minimum of the quadratic field isalways smaller than 1.7.

Spectropolarimetry of magnetic stars. IV. The crossover effect.
This paper is devoted to the study of the crossover effect in magneticAp stars. It is shown that this effect can be measured by the secondorder moment about their centre of the profiles of spectral linesrecorded in the Stokes parameter V. The interpretation of thesemeasurements in terms of magnetic field is developed. It is shown thatone can derive from them a quantity called the mean asymmetry of thelongitudinal magnetic field, which is the first moment of the componentof the magnetic field along the line of sight, about the plane definedby the line of sight and the stellar rotation axis. The consistency ofthe determination of this quantity with that of the mean longitudinalmagnetic field from measurements of wavelength shifts of lines betweenright and left circular polarization is demonstrated. This technique ofanalysis is applied to observations of a sample of 29 stars, among which10 have a detectable crossover effect. For 8 of them, the availableobservational data allow the study of the variations of the asymmetry ofthe longitudinal field with rotation phase. In most cases, thisvariation is sinusoidal and essentially symmetric about 0, and it occursin quadrature with the variation of the mean longitudinal field. A morecomplex behaviour is definitely observed in HD 147010 and HD 175362,where the variation of the asymmetry of the longitudinal field is betterrepresented by the superposition of two sinusoids, one with the rotationfrequency of the star, and the other with twice that frequency.

A new list of effective temperatures of chemically peculiar stars. II.
Not Available

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Herkules
Rektaszcenzió:17h01m33.00s
Deklináció:+14°56'58.0"
Vizuális fényesség:6.31
Távolság:168.919 parszek
RA sajátmozgás:5.4
Dec sajátmozgás:-1.7
B-T magnitude:6.324
V-T magnitude:6.281

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
HD 1989HD 153882
TYCHO-2 2000TYC 988-180-1
USNO-A2.0USNO-A2 0975-08754576
BSC 1991HR 6326
HIPHIP 83308

→ További katalógusok és elnevezések lekérése VizieR-ből