Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

TYC 6269-2776-1


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Space reddenings for fifteen Galactic Cepheids
Space reddenings are derived for 15 Galactic Cepheids from dereddeningCCD BV(RI)_C data for AF-type stars in the immediate vicinities of thevariables, in conjunction with 2MASS reddenings for BAF-type stars inthe same fields. Potential reddening solutions were analyzed using thevariable-extinction method to identify stars sharing potentially similardistances and reddenings to the Cepheids, several of which have largecolor excesses. The intrinsic BV(RI)_C color relation for AF dwarfs wasmodified slightly in the analysis in order to describe better the colorsobserved for unreddened stars in the samples.

Random forest automated supervised classification of Hipparcos periodic variable stars
We present an evaluation of the performance of an automatedclassification of the Hipparcos periodic variable stars into 26 types.The sub-sample with the most reliable variability types available in theliterature is used to train supervised algorithms to characterize thetype dependencies on a number of attributes. The most useful attributesevaluated with the random forest methodology include, in decreasingorder of importance, the period, the amplitude, the V-I colour index,the absolute magnitude, the residual around the folded light-curvemodel, the magnitude distribution skewness and the amplitude of thesecond harmonic of the Fourier series model relative to that of thefundamental frequency. Random forests and a multi-stage scheme involvingBayesian network and Gaussian mixture methods lead to statisticallyequivalent results. In standard 10-fold cross-validation (CV)experiments, the rate of correct classification is between 90 and 100per cent, depending on the variability type. The main mis-classificationcases, up to a rate of about 10 per cent, arise due to confusion betweenSPB and ACV blue variables and between eclipsing binaries, ellipsoidalvariables and other variability types. Our training set and thepredicted types for the other Hipparcos periodic stars are availableonline.

The RAdial Velocity Experiment (RAVE): Third Data Release
We present the third data release of the RAdial Velocity Experiment(RAVE) which is the first milestone of the RAVE project, releasing thefull pilot survey. The catalog contains 83,072 radial velocitymeasurements for 77,461 stars in the southern celestial hemisphere, aswell as stellar parameters for 39,833 stars. This paper describes thecontent of the new release, the new processing pipeline, as well as anupdated calibration for the metallicity based upon the observation ofadditional standard stars. Spectra will be made available in a futurerelease. The data release can be accessed via the RAVE Web site.

Near-infrared (JHK) Photometry of 131 Northern Galactic Classical Cepheids
Near-infrared photometric measurements for 131 Northern GalacticCepheids are presented. The Cepheid light curves are sampled with anaverage of 22 measurements per star fully covering the phase of eachCepheid. The J, H, and K light curves for each Cepheid were uniformlyinterpolated to find the intensity mean magnitudes within each band. Theresults are consistent within ±1% for 26 stars in common withprevious studies. This paper is the first in a projected series of twopapers which will provide additional fundamental data for Cepheids inthe Galaxy, namely, NIR photometry and line-of-sight extinction. In thecourse of this project, 93 additional variables were fortuitouslyobserved within the Cepheid program fields, 82 of which have previouslynot been identified.

Distance determination for RAVE stars using stellar models . II. Most likely values assuming a standard stellar evolution scenario
The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of theMilky Way which already collected over 400 000 spectra of ~ 330 000different stars. We use the subsample of spectra with spectroscopicallydetermined values of stellar parameters to determine the distances tothese stars. The list currently contains 235 064 high quality spectrawhich show no peculiarities and belong to 210 872 different stars. Thenumbers will grow as the RAVE survey progresses. The public version ofthe catalog will be made available through the CDS services along withthe ongoing RAVE public data releases. The distances are determined witha method based on the work by Breddels et al. (2010, A&A, 511, A16).Here we assume that the star undergoes a standard stellar evolution andthat its spectrum shows no peculiarities. The refinements include: theuse of either of the three isochrone sets, a better account of thestellar ages and masses, use of more realistic errors of stellarparameter values, and application to a larger dataset. The deriveddistances of both dwarfs and giants match within ~ 21% to theastrometric distances of Hipparcos stars and to the distances ofobserved members of open and globular clusters. Multiple observations ofa fraction of RAVE stars show that repeatability of the deriveddistances is even better, with half of the objects showing a distancescatter of ? 11%. RAVE dwarfs are ~ 300 pc from the Sun, and giantsare at distances of 1 to 2 kpc, and up to 10 kpc. This places the RAVEdataset between the more local Geneva-Copenhagen survey and the moredistant and fainter SDSS sample. As such it is ideal to address some ofthe fundamental questions of Galactic structure and evolution in thepre-Gaia era. Individual applications are left to separate papers, herewe show that the full 6-dimensional information on position and velocityis accurate enough to discuss the vertical structure and kinematicproperties of the thin and thick disks.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A54

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

On the metallicity gradient of the Galactic disk
Aims: The iron abundance gradient in the Galactic stellar disk providesfundamental constraints on the chemical evolution of this importantGalaxy component, however the spread around the mean slope is, at fixedGalactocentric distance, more than the estimated uncertainties. Methods: To provide quantitative constraints on these trends, weadopted iron abundances for 265 classical Cepheids (more than 50% of thecurrently known sample) based either on high-resolution spectra or onphotometric metallicity indices. Homogeneous distances were estimatedusing near-infrared period-luminosity relations. The sample covers thefour disk quadrants, and their Galactocentric distances range from ~5 to~17 kpc. We provided a new theoretical calibration of themetallicity-index-color (MIC) relation based on Walraven and NIRphotometric passbands. Results: We estimated the photometricmetallicity of 124 Cepheids. Among them 66 Cepheids also havespectroscopic iron abundances and we found that the mean difference is-0.03±0.15 dex. We also provide new iron abundances, based onhigh-resolution spectra, for four metal-rich Cepheids located in theinner disk. The remaining iron abundances are based on high-resolutionspectra collected by our group (73) or available in the literature(130). A linear regression over the entire sample provides an irongradient of -0.051 ± 0.004 dex kpc-1. The above slopeagrees quite well, within the errors, with previous estimates basedeither on Cepheids or on open clusters covering similar Galactocentricdistances. However, Cepheids located in the inner disk systematicallyappear more metal-rich than the mean metallicity gradient. Once we splitthe sample into inner (RG <8 kpc) and outer disk Cepheids,the slope (-0.130±0.015 dex kpc-1) in the formerregion is ≈3 times steeper than the slope in the latter one (-0.042± 0.004 dex kpc-1). In the outer disk the radialdistribution of metal-poor (MP, [Fe/H] <-0.02 dex) and metal-rich(MR) Cepheids across the four disk quadrants does not show a clear trendwhen moving from the innermost to the external disk regions. Therelative fractions of MP and MR Cepheids in the 1st and in the 3rdquadrants differ at the 8σ (MP) and 15σ (MR) levels.Finally, we found that iron abundances in two local overdensities of the2nd and of the 4th quadrant cover individually a range in iron abundanceof ≈0.5 dex. Conclusions: Current findings indicate that therecent chemical enrichment across the Galactic disk shows a clumpydistribution.Based on observations made with ESO Telescopes in La Silla Observatoryunder the program: 60.A-9120(B).

Photoelectric observations of Cepheids in UBV(RI)c (Berdnikov, 2008)
This catalog gathers the observation of 894 Cepheids made between 1986to 2004.Observations are listed in alphabetical order of the constellations. Thestandard deviation for every magnitude and color is 0.01mag.This version supersedes the 1997 edition (Cat. )(3 data files).

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations
The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.

Beobachtungssergebnisse Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V.
Not Available

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

Galactic Interior Motions Derived from HIPPARCOS Proper Motions. I. Young Disk Population
Analyzing Hipparcos proper motions of 1352 O-B5 stars other than theGould belt stars, which are representative of the young disk population,we have found a clear stellar warping motion that is a systematicrotation +3.8 +/- 1.1 km s^-1 kpc^-1 of stars about the axis pointing tothe Galactic center in the sense of increasing the inclination of the Hi warp, and a remarkably large Galactic rotation of (V_0)_O-B5 = 268.7+/- 11.9 km s^-1, compared with the IAU recommendation (V_0 = 220 +/- 20km s^-1), given the Galactocentric distance of the Sun R_0 = 8.5 kpc. Wehave carried out a similar analysis for 170 Hipparcos Cepheids as welland obtained a solution that apparently shows neither the rotation northe shear, other than the Oort differential rotation. The Cepheids arepurely rotating around the Galactic center with the velocity (V_0)_Cep =243.3 +/- 12.0 km s^-1, again larger than the IAU recommendation.However, the solution for the Cepheids, which are considered the sameyoung disk population as the O-B5 stars, seems to be different from thatfor the O-B5 stars. In order to find the above systematic stellar motionas generally as possible, we apply the Ogorodnikov-Milne model to theHipparcos proper motions, and solve for nine kinematic parameters: threecomponents of solar motion, three components of vorticity (rotation),and three components of strain velocity (shear). This paper discussesthe systematic difference in the proper-motion systems between theground-based catalogs and the Hipparcos Catalogue, in order to examineone of the main causes of the large difference between the present (270km s^-1) and previous (220 km s^-1) Galactic rotations.

The shape and scale of Galactic rotation from Cepheid kinematics
A catalog of Cepheid variables is used to probe the kinematics of theGalactic disk. Radial velocities are measured for eight distant Cepheidstoward l = 300 deg; these new Cepheids provide a particularly goodconstraint on the distance to the Galactic center, R0. We model the diskwith both an axisymmetric rotation curve and one with a weak ellipticalcomponent, and find evidence for an ellipticity of 0.043 +/- 0.016 nearthe sun. Using these models, we derive R0 = 7.66 +/- 0.32 kpc andv(circ) = 237 +/- 12 km/s. The distance to the Galactic center agreeswell with recent determinations from the distribution of RR Lyraevariables and disfavors most models with large ellipticities at thesolar orbit.

Galactic kinematics of Cepheids from HIPPARCOS proper motions
The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.

Derivation of the Galactic rotation curve using space velocities
We present rotation curves of the Galaxy based on the space-velocitiesof 197 OB stars and 144 classical cepheids, respectively, which rangeover a galactocentric distance interval of about 6 to 12kpc. Nosignificant differences between these rotation curves and rotationcurves based solely on radial velocities assuming circular rotation arefound. We derive an angular velocity of the LSR of{OMEGA}_0_=5.5+/-0.4mas/a (OB stars) and {OMEGA}_0_=5.4+/-0.5mas/a(cepheids), which is in agreement with the IAU 1985 value of{OMEGA}_0_=5.5mas/a. If we correct for probable rotations of the FK5system, the corresponding angular velocities are {OMEGA}_0_=6.0mas/a (OBstars) and {OMEGA}_0_=6.2mas/a (cepheids). These values agree betterwith the value of {OMEGA}_0_=6.4mas/a derived from the VLA measurementof the proper motion of SgrA^*^.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Rotation curve of the system of classical Cepheids and the distance to the galactic center
Not Available

New radial velocities for classical cepheids. Local galactic rotation revisited
New centre-of-mass radial velocities are calculated for 107 classicalcepheids from CORAVEL observations. We generally determine thesevelocities from four to six measurements carefully spaced in phase, byfitting a "typical" radial velocity curve or the mirror image of thelight curve. A decomposition in Fourier series is used for stars withmore than 10 measurements. Distances are then computed through aperiod-luminosity-colour relation for 278 classical cepheids with knownradial velocity, and an axisymmetric galactic rotation model is appliedto the sample, using a generalised non-linear least square method withuncertainties on both the velocities and the distances. The bestresults, with a rotation curve modelled as a third order polynomial,are: Rsun_=8.09 +/-0.30 kpc, A=15.92 +/-0.34 km/s/kpc, 2ARsun_=257 +/-7 km/s, A2=d^2theta(R)/d R^2^=-3.38+/-0.38 km/s/kpc^2^, A3=d^3theta(R)/d R^3^=1.99 +/-0.62km/s/kpc^3^, u_0_=9.32 +/-0.80 km/s, v_0_=11.18 +/-0.65 km/s. The effectof modifying the distance scale of cepheids, the absorption coefficientor the fitting procedure algorithm are examined. It appears that theproduct 2 A Rsun_ is very robust towards these changes. Theextended sample of classical cepheids with known radial velocitypresented in this paper seems to imply a higher value for A thananterior studies. The radial velocity residuals show a systematic k-termof about 2 km/s. New evidence from cluster cepheids excludes anintrinsic cause for this shift, and a dynamical cause is proposed from acomparison with a N-body simulation of the Galaxy. The simulation showsthat a systematic bias of this magnitude is typical. The structure ofthe local residual velocity field is examined in some detail.

Color Excesses on a Uniform Scale for 328 Cepheids
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJS...72..153F&db_key=AST

Classical Cepheids - Their distances and space distribution
A simplified method of calculating classical Cepheid distances isproposed. It is based on photometric data, without the use of thereddenings. By means of results obtained in this way the followingproblems are discussed: Cepheid double and more numerous aggregates andproperties of the cluster and association Cepheid.

Milky Way rotation and the distance to the galactic center from Cepheid variables
The compiled photometry, reddenings, and radial velocities of GalacticCepheids are fit with an axisymmetric Galactic rotation model. R(0) =7.8 + or - 0.7 kpc and 2AR(0) = 228 + or - 19 km/s are derived. The LMCdistance modulus is 18.45 on the same absolute calibration. ObservedCepheid gamma velocities appear on average to be 30 + or - 1 km/s morenegative than the true corresponding center-of-mass velocities. Thetrend of increasing blueness toward larger Galactocentric radiusconfirms the radial metallicity gradient found spectroscopically.

Studies of Cepheid-type variability. V - The Fourier phases of type II Cepheids with periods of 1-3 days
Fourier phases of type II Cepheids with periods 1-3 d are reanalyzed andcompared with similar data for classical Cepheids, using a new phasedefinition recently proposed by Stellingwerf and Donohoe (1986). It isfound that this definition allows an improved analysis, mainly due tothe possibility of comparison with a standard case. It is shown that theavailable data for the type II Cepheids are in good agreement with theassumption of a resonance at a period of about 1.5 d.

The catalogue of light curves parameters, distances and space coordinates of classical Cepheids.
Not Available

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Nyilas
Rektaszcenzió:18h23m19.15s
Deklináció:-18°34'29.2"
Vizuális fényesség:10.502
RA sajátmozgás:2.3
Dec sajátmozgás:1.2
B-T magnitude:12.462
V-T magnitude:10.664

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
TYCHO-2 2000TYC 6269-2776-1
USNO-A2.0USNO-A2 0675-25378237
HIPHIP 90110

→ További katalógusok és elnevezések lekérése VizieR-ből