Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 2381-656-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet
Using light curves from the HATNet survey for transiting extrasolarplanets we investigate the optical broadband photometric variability ofa sample of 27, 560 field K and M dwarfs selected by color and propermotion (V - K >~ 3.0, ? > 30 mas yr-1, plusadditional cuts in J - H versus H - KS and on the reducedproper motion). We search the light curves for periodic variations andfor large-amplitude, long-duration flare events. A total of 2120 starsexhibit potential variability, including 95 stars with eclipses and 60stars with flares. Based on a visual inspection of these light curvesand an automated blending classification, we select 1568 stars,including 78 eclipsing binaries (EBs), as secure variable stardetections that are not obvious blends. We estimate that a further ~26%of these stars may be blends with fainter variables, though most ofthese blends are likely to be among the hotter stars in our sample. Wefind that only 38 of the 1568 stars, including five of the EBs, havepreviously been identified as variables or are blended with previouslyidentified variables. One of the newly identified EBs is 1RXSJ154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, forwhich we derive preliminary estimates for the component masses and radiiof M 1 = M 2 = 0.258 ± 0.008 Msun and R 1 = R 2 = 0.289 ±0.007 R sun. The radii of the component stars are larger thantheoretical expectations if the system is older than ~200 Myr. Themajority of the variables are heavily spotted BY Dra-type stars forwhich we determine rotation periods. Using this sample, we investigatethe relations between period, color, age, and activity measures,including optical flaring, for K and M dwarfs, finding that many of thewell-established relations for F, G, and K dwarfs continue into the Mdwarf regime. We find that the fraction of stars that is variable withpeak-to-peak amplitudes greater than 0.01 mag increases exponentiallywith the V - KS color such that approximately half of fielddwarfs in the solar neighborhood with M <~ 0.2 M sun arevariable at this level. Our data hint at a change in therotation-activity-age connection for stars with M <~ 0.25 Msun.

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

New subdwarfs. IV - UBV photometry of 1690 high-proper-motion stars
A photometric list of 1690 stars of known high proper motion is used tosearch for potential high-velocity stars of various metallicity valuesin order to find candidates for trigonometric programs on subdwarfs andto enlarge the sample with which to study the relation between stellarkinematics and metal abundance. A list of 113 stars with tangentialspace velocities of 300 km/s or greater is obtained, the highesttangential velocity relative to the sun being 630 km/s. By using thevariation of the tangential velocity with longitude and adopting thegalactic rotation at the solar circle to be 220 km/s, the rotation ofthe subdwarf system is estimated at 0 + or - 50 km/s from the transversevelocity alone, in agreement with determinations based on other methods.

G. P. Kuiper's spectral classifications of proper-motion stars
Spectral classifications are listed for over 3200 stars, mainly of largeproper motion, observed and classified by Kuiper during the years1937-1944 at the Yerkes and McDonald Observatories. While Kuiper himselfpublished many of his types, and while improved classifications are nowavailable for many of these stars, much of value remains. For many ofthe objects, no other spectral data exist.

Spectral classification of high-proper-motion stars
Spectral types have been found for about 900 stars of high proper motioncontained in the Lowell Observatory Northern Hemisphere proper-motionstar survey using all blue-region objective prism plates. The spectralclassification criteria are given. About eighty stars of largetangential velocity have been classified using slit spectrograms takenwith a 36-in. reflector. A new calibration of Luyten's absolutemagnitude vs reduced proper motion relation is made, and its dependenceon spectral type is investigated.

Lowell proper motions II : proper motion survey of the Northern Hemisphere with the 13-inch photographic telescope of the Lowell Observatory
Not Available

New proper-motion stars, (fifth list)
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Persée
Right ascension:04h32m40.98s
Declination:+34°08'07.3"
Apparent magnitude:10.999
Distance:39.984 parsecs
Proper motion RA:120.7
Proper motion Dec:-236.6
B-T magnitude:12.4
V-T magnitude:11.115

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 2381-656-1
USNO-A2.0USNO-A2 1200-02332714
HIPHIP 21197

→ Request more catalogs and designations from VizieR