Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 2905-1822-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

The Henry Draper Extension Charts: A catalogue of accurate positions, proper motions, magnitudes and spectral types of 86933 stars
The Henry Draper Extension Charts (HDEC), published in the form offinding charts, provide spectral classification for some 87000 starsmostly between 10th and 11th magnitude. This data, being highlyvaluable, as yet was practically unusable for modern computer-basedastronomy. An earlier pilot project (Roeser et al. 1991) demonstrated apossibility to convert this into a star catalogue, using measurements ofcartesian coordinates of stars on the charts and positions of theAstrographic Catalogue (AC) for subsequent identification. We presenthere a final HDEC catalogue comprising accurate positions, propermotions, magnitudes and spectral classes for 86933 stars of the HenryDraper Extension Charts.

UBVRI photometry of G, K, M HIPPARCOS stars
UBVRI data are presented for a set of 229 late-type stars, most of thembeing high proper motion stars. All these data are part of the InputCatalog planned observations for the Hipparcos mission.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Περσεύς
Right ascension:04h46m27.36s
Declination:+43°30'51.6"
Apparent magnitude:9.366
Proper motion RA:-7.6
Proper motion Dec:-0.9
B-T magnitude:10.897
V-T magnitude:9.493

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 2905-1822-1
USNO-A2.0USNO-A2 1275-03715409
HIPHIP 22197

→ Request more catalogs and designations from VizieR