Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 169586


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The frequency of planets in multiple systems
Context: The frequency of planets in binaries is an important issue inthe field of extrasolar planet studies, because of its relevance inestimating of the global planet population of our Galaxy and the cluesit can give to our understanding of planet formation and evolution.However, only preliminary estimates are available in the literature. Aims: We analyze and compare the frequency of planets in multiplesystems to the frequency of planets orbiting single stars. We also tryto highlight possible connections between the frequency of planets andthe orbital parameters of the binaries (such as the periastron and massratio.) Methods: A literature search was performed for binariesand multiple systems among the stars of the sample with uniform planetdetectability defined by Fischer & Valenti (2005, ApJ, 622, 1102),and 202 of the 850 stars of the sample turned out to be binaries,allowing a statistical comparison of the frequency of planets inbinaries and single stars and a study of the run of the planet frequencyas a function of the binary separation. Results: We found that theglobal frequency of planets in the binaries of the sample is notstatistically different from that of planets in single stars. Evenconservatively taking the probable incompleteness of binary detection inour sample into account, we estimate that the frequency of planets inbinaries can be no more than a factor of three lower than that ofplanets in single stars. There is no significant dependence of planetfrequency on the binary separation, except for a lower value offrequency for close binaries. However, this is probably not as low asrequired to explain the presence of planets in close binaries only asthe result of modifications of the binary orbit after the planetformation. Table 8 and Appendix A are only available in electronic form athttp://www.aanda.org

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Extrasolar planets around HD 196050, HD 216437 and HD 160691
We report precise Doppler measurements of the stars HD 216437, HD 196050and HD 160691 obtained with the Anglo-Australian Telescope using theUCLES spectrometer together with an iodine cell as part of theAnglo-Australian Planet Search. Our measurements reveal periodicKeplerian velocity variations that we interpret as evidence for planetsin orbit around these solar type stars. HD 216437 has a period of 1294+/- 250 d, a semi-amplitude of 38 +/- 3 m s-1 and aneccentricity of 0.33 +/- 0.09. The minimum (M sin i) mass of thecompanion is 2.1 +/- 0.3 MJUP and the semi-major axis is 2.4+/- 0.5 au. HD 196050 has a period of 1300 +/- 230 d, a semi-amplitudeof 49 +/- 8 m s-1 and an eccentricity of 0.19 +/- 0.09. Theminimum mass of the companion is 2.8 +/- 0.5 MJUP and thesemi-major axis is 2.4 +/- 0.5 au. We also report further observationsof the metal-rich planet bearing star HD 160691. Our new solutionconfirms the previously reported planet and shows a trend indicating asecond, longer-period companion. These discoveries add to the growingnumbers of mildly eccentric, long-period extrasolar planets aroundmetal-rich Sun-like stars.

Nova Sgr 2001 No. 2 = V4739 Sgr
Not Available

Metallicity effects on the chromospheric activity-age relation for late-type dwarfs
We show that there is a relationship between the age excess, defined asthe difference between the stellar isochrone and chromospheric ages, andthe metallicity as measured by the index [Fe/H] for late-type dwarfs.The chromospheric age tends to be lower than the isochrone age formetal-poor stars, and the opposite occurs for metal-rich objects. Wesuggest that this could be an effect of neglecting the metallicitydependence of the calibrated chromospheric emission-age relation. Wepropose a correction to account for this dependence. We also investigatethe metallicity distributions of these stars, and show that there aredistinct trends according to the chromospheric activity level. Inactivestars have a metallicity distribution which resembles the metallicitydistribution of solar neighbourhood stars, while active stars appear tobe concentrated in an activity strip on the logR'_HKx[Fe/H] diagram. Weprovide some explanations for these trends, and show that thechromospheric emission-age relation probably has different slopes on thetwo sides of the Vaughan-Preston gap.

A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars
More than 800 southern stars within 50 pc have been observed forchromospheric emission in the cores of the Ca II H and K lines. Most ofthe sample targets were chosen to be G dwarfs on the basis of colors andspectral types. The bimodal distribution in stellar activity first notedin a sample of northern stars by Vaughan and Preston in 1980 isconfirmed, and the percentage of active stars, about 30%, is remarkablyconsistent between the northern and southern surveys. This is especiallycompelling given that we have used an entirely different instrumentalsetup and stellar sample than used in the previous study. Comparisons tothe Sun, a relatively inactive star, show that most nearby solar-typestars have a similar activity level, and presumably a similar age. Weidentify two additional subsamples of stars -- a very active group, anda very inactive group. The very active group may be made up of youngstars near the Sun, accounting for only a few percent of the sample, andappears to be less than ~0.1 Gyr old. Included in this high-activitytail of the distribution, however, is a subset of very close binaries ofthe RS CVn or W UMa types. The remaining members of this population maybe undetected close binaries or very young single stars. The veryinactive group of stars, contributting ~5%--10% to the total sample, maybe those caught in a Maunder Minimum type phase. If the observations ofthe survey stars are considered to be a sequence of snapshots of the Sunduring its life, we might expect that the Sun will spend about 10% ofthe remainder of its main sequence life in a Maunder Minimum phase.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Schütze
Right ascension:18h26m40.81s
Declination:-30°23'36.0"
Apparent magnitude:6.759
Distance:45.579 parsecs
Proper motion RA:13.7
Proper motion Dec:-58.4
B-T magnitude:7.398
V-T magnitude:6.812

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 169586
TYCHO-2 2000TYC 7393-1359-1
USNO-A2.0USNO-A2 0525-35803396
HIPHIP 90397

→ Request more catalogs and designations from VizieR