Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 120734


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

New absolute magnitude calibrations for W Ursa Majoris type binaries
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed.31 W UMa stars, which have the most accurate parallaxes(σπ/π<0.15) which are neither associated with aphotometric tertiary nor with evidence of a visual companion, wereselected for re-calibrating the Period-Luminosity-Color (PLC) relationof W UMa stars. Using the Lutz-Kelker (LK) bias corrected (mostprobable) parallaxes, periods ({0.26< P< 0.87}, P in days), andcolors ({0.04<(B-V)0<1.28}) of the 31 selected W UMa,the PLC relation have been revised and re-calibrated. The differencebetween the old (revised but not bias corrected) and the new (LK biascorrected) relations are almost negligible in predicting the distancesof W UMa stars up to about 100 pc. But, it increases and may becomeintolerable as distances of stars increase. Additionally, using(J-H)0 and (H-K_s)0 colors from 2MASS (Two MicronAll Sky Survey) data, a PLC relation working with infrared data wasderived. It can be used with infrared colors in the range-0.01<(J-H)0<0.58, and{-0.10<(H-K_s)0<0.18}. Despite of the fact that the2MASS data refer to single epoch observations which are not guaranteedto be taken at maximum brightness of the W UMa stars, the establishedrelation has been found surprisingly consistent and reliable inpredicting LK corrected distances of W UMa stars.

Angular momentum and mass evolution of contact binaries
Various scenarios of contact binary evolution have been proposed in thepast, giving hints of (sometimes contradictory) evolutionary sequencesconnecting A- and W-type systems. As the components of close detachedbinaries approach each other and contact binaries are formed, followingevolutionary paths transforms them into systems of two categories:A-type and W-type. The systems evolve in a similar way but underslightly different circumstances. The mass/energy transfer rate isdifferent, leading to quite different evolutionary results. Analternative scenario of evolution in contact is presented and discussed,based on the observational data of over one hundred low-temperaturecontact binaries. It results from the observed correlations amongcontact binary physical and orbital parameters. Theoretical tracks arecomputed assuming angular momentum loss from a system via stellar wind,accompanied by mass transfer from an advanced evolutionary secondary tothe main-sequence primary. A good agreement is seen between the tracksand the observed graphs. Independently of details of the evolution incontact and a relation between A- and W-type systems, the ultimate fateof contact binaries involves the coalescence of both components into asingle fast rotating star.

Dynamical evolution of active detached binaries on the logJo-logM diagram and contact binary formation
Orbital angular momentum (OAM, Jo), systemic mass (M) andorbital period (P) distributions of chromospherically active binaries(CAB) and W Ursae Majoris (W UMa) systems were investigated. Thediagrams of and logJo-logM were formed from 119 CAB and 102 WUMa stars. The logJo-logM diagram is found to be mostmeaningful in demonstrating dynamical evolution of binary star orbits. Aslightly curved borderline (contact border) separating the detached andthe contact systems was discovered on the logJo-logM diagram.Since the orbital size (a) and period (P) of binaries are determined bytheir current Jo, M and mass ratio, q, the rates of OAM loss(dlogJo/dt) and mass loss (dlogM/dt) are primary parametersto determine the direction and the speed of the dynamical evolution. Adetached system becomes a contact system if its own dynamical evolutionenables it to pass the contact border on the logJo-logMdiagram. The evolution of q for a mass-losing detached system is unknownunless the mass-loss rate for each component is known. Assuming q isconstant in the first approximation and using the mean decreasing ratesof Jo and M from the kinematical ages of CAB stars, it hasbeen predicted that 11, 23 and 39 per cent of current CAB stars wouldtransform to W UMa systems if their nuclear evolution permits them tolive 2, 4 and 6 Gyr, respectively.

Search for associations containing young stars (SACY). I. Sample and searching method
We report results from a high-resolution optical spectroscopic surveyaimed to search for nearby young associations and young stars amongoptical counterparts of ROSAT All-Sky Survey X-ray sources in theSouthern Hemisphere. We selected 1953 late-type (B-V~≥~0.6),potentially young, optical counterparts out of a total of 9574 1RXSsources for follow-up observations. At least one high-resolutionspectrum was obtained for each of 1511 targets. This paper is the firstin a series presenting the results of the SACY survey. Here we describeour sample and our observations. We describe a convergence method in the(UVW) velocity space to find associations. As an example, we discuss thevalidity of this method in the framework of the β Pic Association.

Contact Binaries with Additional Components. I. The Extant Data
We have attempted to establish observational evidence for the presenceof distant companions that may have acquired and/or absorbed angularmomentum during the evolution of multiple systems, thus facilitating orenabling the formation of contact binaries. In this preliminaryinvestigation we use several techniques (some of themdistance-independent) and mostly disregard the detection biases ofindividual techniques in an attempt to establish a lower limit to thefrequency of triple systems. While the whole sample of 151 contactbinary stars brighter than Vmax=10 mag gives a firm lowerlimit of 42%+/-5%, the corresponding number for the much better observednorthern-sky subsample is 59%+/-8%. These estimates indicate that mostcontact binary stars exist in multiple systems.

Luminosity function of contact binaries based on the All Sky Automated Survey (ASAS)
The luminosity function for contact binary stars of the W UMa type isevaluated on the basis of the All Sky Automated Survey (ASAS)photometric project covering all stars south of δ=+ 28° withina magnitude range 8 < V < 13. Lack of colour indices enforced alimitation to 3374 systems with P < 0.562 d (i.e. 73 per cent of allsystems with P < 1 d) where a simplified MV(logP)calibration could be used. The spatial density relative to themain-sequence FGK stars of 0.2 per cent, as established previously fromthe Hipparcos sample to V= 7.5, is confirmed. While the numbers ofcontact binaries in the ASAS are large and thus the statisticaluncertainties small, derivation of the luminosity function required acorrection for missed systems with small amplitudes and with orbitalperiods longer than 0.562 d; the correction, by a factor of 3, carriesan uncertainty of about 30 per cent.

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

Kinematics of W Ursae Majoris type binaries and evidence of the two types of formation
We study the kinematics of 129 W UMa binaries and we discuss itsimplications on the contact binary evolution. The sample is found to beheterogeneous in the velocity space. That is, kinematically younger andolder contact binaries exist in the sample. A kinematically young (0.5Gyr) subsample (moving group) is formed by selecting the systems thatsatisfy the kinematical criteria of moving groups. After removing thepossible moving group members and the systems that are known to bemembers of open clusters, the rest of the sample is called the fieldcontact binary (FCB) group. The FCB group is further divided into fourgroups according to the orbital period ranges. Then, a correlation isfound in the sense that shorter-period less-massive systems have largervelocity dispersions than the longer-period more-massive systems.Dispersions in the velocity space indicate a 5.47-Gyr kinematical agefor the FCB group. Compared with the field chromospherically activebinaries (CABs), presumably detached binary progenitors of the contactsystems, the FCB group appears to be 1.61 Gyr older. Assuming anequilibrium in the formation and destruction of CAB and W UMa systems inthe Galaxy, this age difference is treated as an empirically deducedlifetime of the contact stage. Because the kinematical ages (3.21, 3.51,7.14 and 8.89 Gyr) of the four subgroups of the FCB group are muchlonger than the 1.61-Gyr lifetime of the contact stage, the pre-contactstages of the FCB group must dominantly be producing the largedispersions. The kinematically young (0.5 Gyr) moving group covers thesame total mass, period and spectral ranges as the FCB group. However,the very young age of this group does not leave enough room forpre-contact stages, and thus it is most likely that these systems wereformed in the beginning of the main sequence or during thepre-main-sequence contraction phase, either by a fission process or mostprobably by fast spiralling in of two components in a common envelope.

On the properties of contact binary stars
We have compiled a catalogue of light curve solutions of contact binarystars. It contains the results of 159 light curve solutions. Theproperties of contact binary stars were studied using the cataloguedata. As is well known since Lucy's (\cite{Lucy68a},b) and Mochnacki's(\cite{Mochnacki81}) studies, primary components transfer their ownenergy to the secondary star via the common envelope around the twostars. This transfer was parameterized by a transfer parameter (ratio ofthe observed and intrinsic luminosities of the primary star). We provethat this transfer parameter is a simple function of the mass andluminosity ratios. We introduced a new type of contact binary stars: Hsubtype systems which have a large mass ratio (q>0.72). These systemsshow behaviour in the luminosity ratio- transfer parameter diagram thatis very different from that of other systems and according to ourresults the energy transfer rate is less efficient in them than in othertypes of contact binary stars. We also show that different types ofcontact binaries have well defined locations on the mass ratio -luminosity ratio diagram. Several contact binary systems do not followLucy's relation (L2/L1 =(M2/M1)0.92). No strict mass ratio -luminosity ratio relation of contact binary stars exists.Tables 2 and 3 are available in electronic form athttp://www.edpsciences.org

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

Up-to-Date Linear Elements of Eclipsing Binaries
About 1800 O-C diagrams of eclipsing binaries were analyzed and up-todate linear elements were computed. The regularly updated ephemerides(as a continuation of SAC) are available only in electronic form at theInternet address: http://www.as.ap.krakow.pl/ephem/.

Catalogue of the field contact binary stars
A catalogue of 361 galactic contact binaries is presented. Listedcontact binaries are divided into five groups according to the type andquality of the available observations and parameters. For all systemsthe ephemeris for the primary minimum, minimum and maximum visualbrightness and equatorial coordinates are given. If available,photometric elements, (m1+m2)sin3i,spectral type, parallax and magnitude of the O'Connell effect are alsogiven. Photometric data for several systems are augmented by newobservations. The quality of the available data is assessed and systemsrequiring modern light-curve solutions are selected. Selectedstatistical properties of the collected data are discussed.

The automatic photometric telescope at the South African Astronomical Observatory.
Not Available

A CCD Photometric Study of the Contact Binary V396 Monocerotis
Complete BV light curves of the W Ursae Majoris binary V396 Mon arepresented. The present CCD photometric observations reveal that thelight curves of the system are obviously asymmetric, with the primarymaximum brighter than the secondary maximum (the ``O'Connell effect'').The light curves are analyzed by means of the latest version of theWilson-Devinney code. The results show that V396 Mon is a W-subtype WUMa contact binary with a mass ratio of 0.402. The asymmetry of thelight curves is explained by a cool spot on the secondary component. Thenature of the overluminosity of the secondary of a W UMa-type system isanalyzed. It is shown that the overluminosity of the secondary isclearly related to the mass of the primary and that, for a W UMa system,the higher the mass of the primary, the greater the overluminosity ofthe secondary. In addition, the overluminosity of the secondary is alsorelated to its own density: the lower the density of the secondary, thegreater its overluminosity.

ROSAT all-sky survey of W Ursae Majoris stars and the problem of supersaturation
From ROSAT all-sky survey (RASS) data we obtained X-ray fluxes for 57 WUMa type contact systems. In our sample we detected three stars whichare the shortest period main sequence binaries ever found as X-raysources. For stars with (B-V)_0 < 0.6 the normalized X-ray fluxdecreases with a decreasing color index but for (B-V)_0 > 0.6 aplateau is reached, similar to the saturation level observed for single,rapidly rotating stars. The X-ray flux of W UMa stars is about 4-5 timesweaker than that of the fastest rotating single stars. Because earlytype, low activity variables have longer periods, an apparentperiod-activity relation is seen among our stars, while cool stars with(B-V)_0 > 0.6 and rotation periods between 0.23 and 0.45 days do notshow any such relation. The lower X-ray emission of the single, ultrafast rotators (UFRs) and W UMa stars is interpreted as the result of adecreased coronal filling factor. The physical mechanisms responsiblefor the decreased surface coverage differs for UFRs and W UMa systems.For UFRs we propose strong polar updrafts within a convection zone,driven by nonuniform heating from below. The updrafts should beaccompanied by large scale poleward flows near the bottom of theconvective layer and equatorward flows in the surface layers. The flowsdrag dynamo generated fields toward the poles and create a field-freeequatorial region with a width depending on the stellar rotation rate.For W UMa stars we propose that a large scale horizontal flow embracingboth stars will prevent the magnetic field from producing long-livedstructures filled with hot X-ray emitting plasma. The decreased activityof the fastest rotating UFRs increases the angular momentum loss timescale of stars in a supersaturated state. Thus the existence of a periodcutoff and a limiting mass of W UMa stars can be naturally explained.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Absolute Magnitude Calibration for the W UMa-Type Systems Based on HIPPARCOS Data
Hipparcos parallax data for 40 contact binary stars of the W UMa-type(with epsilon M_V < 0.5) are used to derive a new, (B-V)-basedabsolute-magnitude calibration of the form M_V = M_V(log P,B-V). Thecalibration covers the ranges 0.26 < (B-V)_0 < 1.14, 0.24 < P< 1.15 day, and 1.4 < M_V < 6.1; it is based on a solutionweighted by relative errors in the parallaxes (2.7% to 24%). Previouscalibrations have not been based on such a wide period and color space,and while they have been able to predict M_V with sufficient accuracyfor systems closely following the well-known period-color relation, thenew calibration should be able to give also good predictions for moreexotic ``outlying'' contact binary systems. The main limitations of thiscalibration are the inadequate quality of the ground-based photometricdata, and the restriction to the (B-V) index, which is more sensitive tometallicity effects than the (V-I) index; metallicities are, however,basically unknown for the local W UMa-type systems. (SECTION: Stars)

The properties of W Ursae Majoris contact binaries: new results and old problems.
The physical properties of W UMa binary systems are revisited on thebasis of the observational data published in the last decade and of therecent theoretical studies on angular-momentum-loss-driven secularevolution. The absolute elements (masses, radii, luminosities) arederived by an inference method and a calibration based on the availablehigh quality spectroscopic orbits. The derived age (8Gy) agrees with theestimate of Guinan and Bradstreet from space motions. The analysis ofthe resulting physical parameters shows little correlation between thestandard classification in A and W subtype (first proposed by Binnendijk(1970) and only related to the light curve morphology) and theevolutionary status and origin of the systems. Most A-subtype systemsseem to have no evolutionary link with W-subtype ones. The relationbetween total mass and mass ratio for the "bona fide" sample alsosuggests that mass loss from the system may play an important role.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Are Contact Binaries Undergoing Thermal Relaxation Oscillations with Contact Discontinuity?
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110..782W&db_key=AST

The thermal relaxation oscillation states of contact binaries
A contact system almost certainly cannot exist in a state of staticequilibrium undergoing periodic thermal relaxation oscillation (TRO). Inthis paper the TRO evidence is found by the calculation of 22 contactsystems: A-sub and W-sub types are in expanding and contracting TROstates at the velocities of 25.04 and 3.10 m/yr, respectively. It ispointed out that the W-phenomenon is phase-dependent and correspondingto the contracting TRO phase. The corrected period-color diagram impliesthat the two kind systems have the same physical structure.

The photometric method of extrasolar planet detection revisited
We investigate the geometry concerning the photometric method ofextrasolar planet detection, i.e., the detection of dimunition of aparent star's brightness during a planetary transit. Under theassumption that planetary orbital inclinations can be defined by aGaussian with a sigma of 10 deg centered on the parent star's equatorialplane, Monte Carlo simulations suggest that for a given star observed atan inclination of exactly 90 deg, the probability of at least oneEarth-sized or larger planet being suitably placed for transits isapproximately 4%. This probability drops to 3% for a star observed at aninclination of 80 deg, and is still approximately 0.5% for a starobserved at an inclination of 60 deg. If one can select 100 stars with apre-determined inclination equal or greater than 80 deg, the probabilityof at least one planet being suitably configured for transits is 95%.The majority of transit events are due to planets in small-a orbitssimilar to the Earth and Venus; thus, the photometric method inprinciple is the method best suited for the detection of Earthlikeplanets. The photometric method also allows for testing whether or notplanets can exist within binary systems. This can ge done by selectingbinary systems observed at high orbital inclinations, both eclipsingbinaries and wider visual binaries. For a 'real-world' example, we lookat the alpha Centauri system (i = 79.2 deg). If we assume that theequatorial planes of both components coincide with the system's orbitalplane, Monte Carlo simulations suggest that the probability of at leastone planet (of either component) being suitably configured for transitsis approximately 8%. In conclusion, we present a non-exhaustive list ofsolar-type stars, both single and within binary systems, which exhibit ahigh equatorial inclination. These objects may be considered aspreliminary candidates for planetary searches via the photometricmethod.

The interaction between the secondary and the common convective envelope in a contact binary
It has been suggested that a contact system almost certainly cannotexist in static equilibrium undergoing periodic thermal relaxationoscillation. The energy transfer in a common convective envelope (CCE)makes the secondary have a complex structure, so the interaction betweenthe secondary and CCE may play an important role in the structure andevolution of the contact system. The present paper tests the ThermalRelaxation Oscillation (TRO) theory and investigates this interactionwith polytropic stellar model from the observational datum of 22 contactsystems directly. It shows that the A-type systems are expanding with avelocity of 25.04 m/yr, and the W-type systems are contracting atvelocity of 3.10 m/yr by the calculations about these contact systems.Also, we calculate the ratio of energy transfer and the interactioncoefficient for them. The HS (hot secondary) model is supported by ourcalculations. These results may help to understand the TRO theory andthe W-phenomenon.

Microwave emission from southern contact-binary stars
We report the results of high-sensitivity 4.8 GHz observations of foursouthern contact-binary stars (AE Phe, YY Eri, RW Dor, and V757 Cen)made with the Australia Telescope Compact Array. None of these starswere detected above a 4-sigma level of 0.4 mJy. A comparison of theradio emission properties of contact binaries (derived from this studyand from the literature) to those of short-period RS CVn stars, suggeststhat a decrease in the dynamo efficiency of binary stars as theyapproach contact may be required to explain the lower intrinsic radioluminosity of contact binaries.

The structure of late-type contact binaries
A unified treatment of late-type and early-type contact binaries basedon the assumption of hydrostatic equilibrium is extended here andapplied to late-type systems assuming systems in a steady state withminimized mass motions. A survey of configurations with M/M(solar) = 2or greater is presented, and the observational facts are shown to agreewith the theory.

Spectroscopic binaries - 15th complementary catalog
Published observational data on the orbital characteristics of 436spectroscopic binaries, covering the period 1982-1986, are compiled intables. The data sources and the organization of the catalog are brieflydiscussed, and notes are provided for each item.

The evolutionary state of contact and near-contact binary stars
A compilation is presented of the masses, radii, and luminosities of thecomponents of 31 F-K type binary systems which have been found to be incontact or near-contact states. Comparisons of these data with thoseexpected for single stars demonstrates that: (1) the primary componentsof the shallow-contact W-type WUMa systems are unevolved main-sequencestars, while those of the deeper-contact A-type systems are near to theterminal-age main sequence; (2) the secondary components of the W-typesystems have radii of the order of 1.5 times larger than expected fortheir ZAMS masses, while those of the A-type systems have radii of theorder of three times larger; (3) the nine systems in the sample which donot display EW-type light curves can be divided into three marginalcontact systems, five semidetached systems, and one detached system. Theimplications of these findings for the types of evolution into contactare addressed.

Evolutionary State of Contact Binaries
A new method for estimating the evolutionary state of contact binarysystems from observations is described. Investigations of 38 systemsshow that all the A subtype systems and some of the W subtype systemsare evolved. Some of these systems are not in contact at zero-age.

General properties of W Ursae Majoris systems
The light curves of a sample of 42 W Ursae Majoris binary systems (21W-type, 21 A-type) have been synthesized using the computer code ofWilson and Devinney (1971). The masses, radii and luminosities of thestars have been derived assuming the global properties of a contactbinary system are the same as those of an analogous detached system. Atable listing the main photometric data is given. Substantial continuitywas observed in the physical properties of the A-type and the W-typesystems, suggesting a scenario in which almost all of the A-type systemsare the evolved counterparts of the W-types. The existence of aninhomogeneous group, probably evolved into contact from a detachedconfiguration, is confirmed. An upper limit for the primary mass of theunevolved objects is derived.

Evolutionary status of W UMa-type binaries
Absolute parameters of 18 W Ursae Majoris systems have been collected.The evolutionary status of these systems is discussed on the basis ofthe mass-radius and mass-luminosity diagrams. It is concluded that themajority of binaries from analysed sample lie close to ZAMS line on bothdiagrams. Four systems seem to be evolved and to have unexpectedly largetemperatures as for their masses.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Zentaur
Right ascension:13h51m55.74s
Declination:-36°37'24.8"
Apparent magnitude:8.556
Distance:70.522 parsecs
Proper motion RA:-120.7
Proper motion Dec:-64
B-T magnitude:9.321
V-T magnitude:8.62

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 120734
TYCHO-2 2000TYC 7291-411-1
USNO-A2.0USNO-A2 0525-16683711
HIPHIP 67682

→ Request more catalogs and designations from VizieR