Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 5813


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Stellar kinematics and populations of early-type galaxies with the SAURON and OASIS integral-field spectrographs
We summarise the results and achievements of integral-field spectroscopyof early-type galaxies, observed as part of a survey using both theSAURON and OASIS spectrographs. From the perspective of integral-fieldspectroscopy, these otherwise smooth and featureless objects show awealth of structure, both in their stellar kinematics and populations.We focus on the stellar content, and examine properties on bothkiloparsec scales with SAURON, and scales of 100’s of parsecs withOASIS. These complementary studies reveal two types of kinematicallydistinct components (KDCs), differing primarily in their intrinsicsizes. In previous studies, KDCs and their host galaxies have generallybeen found to be unremarkable in other aspects. We show that large KDCs,typical of the well-studied cases, indeed show little or no agedifferences with their host galaxy. The KDCs detected with the higherspatial-resolution of OASIS are intrinsically smaller and include, incontrast, a significant fraction of young stars. We speculate on therelationship between KDCs and their host galaxies, and the implicationsfor young populations in early-type galaxies.

The SAURON project - VI. Line strength maps of 48 elliptical and lenticular galaxies
We present absorption line strength maps of 48 representative ellipticaland lenticular galaxies obtained as part of a survey of nearby galaxiesusing our custom-built integral-field spectrograph, SAURON, operating onthe William Herschel Telescope. Using high-quality spectra, spatiallybinned to a constant signal-to-noise ratio, we measure four key age,metallicity and abundance ratio sensitive indices from the Lick/IDSsystem over a two-dimensional field extending up to approximately oneeffective radius. A discussion of calibrations and offsets is given,along with a description of error estimation and nebular emissioncorrection. We modify the classical Fe5270 index to define a new index,Fe5270S, which maximizes the useable spatial coverage ofSAURON. Maps of Hβ, Fe5015, Mgb and Fe5270S arepresented for each galaxy. We use the maps to compute average linestrengths integrated over circular apertures of one-eighth effectiveradius, and compare the resulting relations of index versus velocitydispersion with previous long-slit work. The metal line strength mapsshow generally negative gradients with increasing radius roughlyconsistent with the morphology of the light profiles. Remarkabledeviations from this general trend exist, particularly the Mgb isoindexcontours appear to be flatter than the isophotes of the surfacebrightness for about 40 per cent of our galaxies without significantdust features. Generally, these galaxies exhibit significant rotation.We infer from this that the fast-rotating component features a highermetallicity and/or an increased Mg/Fe ratio as compared to the galaxy asa whole. The Hβ maps are typically flat or show a mild positiveoutwards radial gradient, while a few galaxies show strong central peaksand/or elevated overall Hβ strength likely connected to recent starformation activity. For the most prominent post-starburst galaxies, eventhe metal line strength maps show a reversed gradient.

The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies
We present the emission-line fluxes and kinematics of 48 representativeelliptical and lenticular galaxies obtained with our custom-builtintegral-field spectrograph, SAURON, operating on the William HerschelTelescope. Hβ, [OIII]λλ4959,5007 and[NI]λλ5198,5200 emission lines were measured using a newprocedure that simultaneously fits both the stellar spectrum and theemission lines. Using this technique we can detect emission lines downto an equivalent width of 0.1 Å set by the current limitations indescribing galaxy spectra with synthetic and real stellar templates,rather than by the quality of our spectra. Gas velocities and velocitydispersions are typically accurate to within 14 and 20 kms-1, respectively, and at worse to within 25 and 40 kms-1. The errors on the flux of the [OIII] and Hβ linesare on average 10 and 20 per cent, respectively, and never exceed 30 percent. Emission is clearly detected in 75 per cent of our samplegalaxies, and comes in a variety of resolved spatial distributions andkinematic behaviours. A mild dependence on the Hubble type and galacticenvironment is observed, with higher detection rates in lenticulargalaxies and field objects. More significant is the fact that only 55per cent of the galaxies in the Virgo cluster exhibit clearly detectedemission. The ionized-gas kinematics is rarely consistent with simplecoplanar circular motions. However, the gas almost never displayscompletely irregular kinematics, generally showing coherent motions withsmooth variations in angular momentum. In the majority of the cases, thegas kinematics is decoupled from the stellar kinematics, and in half ofthe objects this decoupling implies a recent acquisition of gaseousmaterial. Over the entire sample however, the distribution of the meanmisalignment values between stellar and gaseous angular momenta isinconsistent with a purely external origin. The distribution ofkinematic misalignment values is found to be strongly dependent on theapparent flattening and the level of rotational support of galaxies,with flatter, fast rotating objects hosting preferentially corotatinggaseous and stellar systems. In a third of the cases, the distributionand kinematics of the gas underscore the presence of non-axisymmetricperturbations of the gravitational potential. Consistent with previousstudies, the presence of dust features is always accompanied by gasemission while the converse is not always true. A considerable range ofvalues for the [OIII]/Hβ ratio is found both across the sample andwithin single galaxies. Despite the limitations of this ratio as anemission-line diagnostic, this finding suggests either that a variety ofmechanisms is responsible for the gas excitation in E and S0 galaxies orthat the metallicity of the interstellar material is quiteheterogeneous.

The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies
We investigate the well-known correlations between the dynamicalmass-to-light ratio (M/L) and other global observables of elliptical (E)and lenticular (S0) galaxies. We construct two-integral Jeans andthree-integral Schwarzschild dynamical models for a sample of 25 E/S0galaxies with SAURON integral-field stellar kinematics to about oneeffective (half-light) radius Re. They have well-calibratedI-band Hubble Space Telescope WFPC2 and large-field ground-basedphotometry, accurate surface brightness fluctuation distances, and theirobserved kinematics is consistent with an axisymmetric intrinsic shape.All these factors result in an unprecedented accuracy in the M/Lmeasurements. We find a tight correlation of the form (M/L) = (3.80 +/-0.14) ×(σe/200kms-1)0.84+/-0.07 betweenthe M/L (in the I band) measured from the dynamical models and theluminosity-weighted second moment σe of the LOSVDwithin Re. The observed rms scatter in M/L for our sample is18 per cent, while the inferred intrinsic scatter is ~13 per cent. The(M/L)-σe relation can be included in the remarkableseries of tight correlations between σe and othergalaxy global observables. The comparison of the observed correlationswith the predictions of the Fundamental Plane (FP), and with simplevirial estimates, shows that the `tilt' of the FP of early-typegalaxies, describing the deviation of the FP from the virial relation,is almost exclusively due to a real M/L variation, while structural andorbital non-homology have a negligible effect. When the photometricparameters are determined in the `classic' way, using growth curves, andthe σe is measured in a large aperture, the virial massappears to be a reliable estimator of the mass in the central regions ofgalaxies, and can be safely used where more `expensive' models are notfeasible (e.g. in high-redshift studies). In this case the best-fittingvirial relation has the form (M/L)vir= (5.0 +/- 0.1)×Reσ2e/(LG), in reasonableagreement with simple theoretical predictions. We find no differencebetween the M/L of the galaxies in clusters and in the field. Thecomparison of the dynamical M/L with the (M/L)pop inferredfrom the analysis of the stellar population, indicates a median darkmatter fraction in early-type galaxies of ~30 per cent of the total massinside one Re, in broad agreement with previous studies, andit also shows that the stellar initial mass function varies little amongdifferent galaxies. Our results suggest a variation in M/L at constant(M/L)pop, which seems to be linked to the galaxy dynamics. Wespeculate that fast-rotating galaxies have lower dark matter fractionsthan the slow-rotating and generally more-massive ones. If correct, thiswould suggest a connection between the galaxy assembly history and thedark matter halo structure. The tightness of our correlation providessome evidence against cuspy nuclear dark matter profiles in galaxies.

The Ages of Elliptical Galaxies from Infrared Spectral Energy Distributions
The mean ages of early-type galaxies obtained from the analysis ofoptical spectra give a mean age of 8 Gyr at z=0, with 40% being youngerthan 6 Gyr. Independent age determinations are possible by usinginfrared spectra (5-21 μm), which we have obtained with the InfraredSpectrograph on Spitzer. This age indicator is based on the collectivemass-loss rate of stars, in which mass loss from AGB stars produces asilicate emission feature at 9-12 μm. This feature decreases morerapidly than the shorter wavelength continuum as a stellar populationages, providing an age indicator. From observations of 30 nearbyearly-type galaxies, 29 show a spectral energy distribution dominated bystars, and one has significant emission from the ISM and is excluded.The infrared age indicators for the 29 galaxies show them all to be old,with a mean age of about 10 Gyr and a standard deviation of only a fewGyr. This is consistent with the ages inferred from the values ofM/LB, but is inconsistent with the ages derived from theoptical line indices, which can be much younger. All of these ageindicators are luminosity weighted and should be correlated, even ifmultiple-age components are considered. The inconsistency indicates thatthere is a significant problem with either the infrared and theM/LB ages, which agree, or with the ages inferred from theoptical absorption lines.

CIRS: Cluster Infall Regions in the Sloan Digital Sky Survey. I. Infall Patterns and Mass Profiles
We use the Fourth Data Release of the Sloan Digital Sky Survey (SDSS) totest the ubiquity of infall patterns around galaxy clusters and measurecluster mass profiles to large radii. The Cluster and Infall RegionNearby Survey (CAIRNS) found infall patterns in nine clusters, but thecluster sample was incomplete. Here we match X-ray cluster catalogs withSDSS, search for infall patterns, and compute mass profiles for acomplete sample of X-ray-selected clusters. Very clean infall patternsare apparent in most of the clusters, with the fraction decreasing withincreasing redshift due to shallower sampling. All 72 clusters in awell-defined sample limited by redshift (ensuring good sampling) andX-ray flux (excluding superpositions) show infall patterns sufficient toapply the caustic technique. This sample is by far the largest sample ofcluster mass profiles extending to large radii to date. Similar toCAIRNS, cluster infall patterns are better defined in observations thanin simulations. Further work is needed to determine the source of thisdifference. We use the infall patterns to compute mass profiles for 72clusters and compare them to model profiles. Cluster scaling relationsusing caustic masses agree well with those using X-ray or virial massestimates, confirming the reliability of the caustic technique. Weconfirm the conclusion of CAIRNS that cluster infall regions are wellfitted by Navarro-Frenk-White (NFW) and Hernquist profiles and poorlyfitted by singular isothermal spheres. This much larger sample enablesnew comparisons of cluster properties with those in simulations. Theshapes (specifically NFW concentrations) of the mass profiles agree wellwith the predictions of simulations. The mass in the infall region istypically comparable to or larger than that in the virial region.Specifically, the mass inside the turnaround radius is on average2.19+/-0.18 times that within the virial radius. This ratio agrees wellwith recent predictions from simulations of the final masses of darkmatter halos.

A radio census of nuclear activity in nearby galaxies
In order to determine the incidence of black hole accretion-drivennuclear activity in nearby galaxies, as manifested by their radioemission, we have carried out a high-resolution Multi-ElementRadio-Linked Interferometer Network (MERLIN) survey of LINERs andcomposite LINER/Hii galaxies from a complete magnitude-limited sample ofbright nearby galaxies (Palomar sample) with unknown arcsecond-scaleradio properties. There are fifteen radio detections, of which three arenew subarcsecond-scale radio core detections, all being candidate AGN.The detected galaxies supplement the already known low-luminosity AGN -low-luminosity Seyferts, LINERs and composite LINER/Hii galaxies - inthe Palomar sample. Combining all radio-detected Seyferts, LINERs andcomposite LINER/Hii galaxies (LTS sources), we obtain an overall radiodetection rate of 54% (22% of all bright nearby galaxies) and weestimate that at least ~50% (~20% of all bright nearby galaxies) aretrue AGN. The radio powers of the LTS galaxies allow the construction ofa local radio luminosity function. By comparing the luminosity functionwith those of selected moderate-redshift AGN, selected from the 2dF/NVSSsurvey, we find that LTS sources naturally extend the RLF of powerfulAGN down to powers of about 10 times that of Sgr A*.

The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?
This is the second of a series of three papers exploring the connectionbetween the multiwavelength properties of AGN in nearby early-typegalaxies and the characteristics of their hosts. We selected two sampleswith 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels ofradio luminosity as low as 1036 erg s-1. In PaperI we presented a study of the surface brightness profiles for the 65objects with available archival HST images out of the 116 radio-detectedgalaxies. We classified early-type galaxies into "core" and "power-law"galaxies, discriminating on the basis of the slope of their nuclearbrightness profiles, following the Nukers scheme. Here we focus on the29 core galaxies (hereafter CoreG). We used HST and Chandra data toisolate their optical and X-ray nuclear emission. The CoreG invariablyhost radio-loud nuclei, with an average radio-loudness parameter of LogR = L5 {GHz} / LB ˜ 3.6. The optical and X-raynuclear luminosities correlate with the radio-core power, smoothlyextending the analogous correlations already found for low luminosityradio-galaxies (LLRG) toward even lower power, by a factor of ˜1000, covering a combined range of 6 orders of magnitude. This supportsthe interpretation of a common non-thermal origin of the nuclearemission also for CoreG. The luminosities of the nuclear sources, mostlikely dominated by jet emission, set firm upper limits, as low asL/L_Edd ˜ 10-9 in both the optical and X-ray band, on anyemission from the accretion process. The similarity of CoreG and LLRGwhen considering the distributions host galaxies luminosities and blackhole masses, as well as of the surface brightness profiles, indicatesthat they are drawn from the same population of early-type galaxies.LLRG represent only the tip of the iceberg associated with (relatively)high activity levels, with CoreG forming the bulk of the population. Wedo not find any relationship between radio-power and black hole mass. Aminimum black hole mass of M_BH = 108 Mȯ isapparently associated with the radio-loud nuclei in both CoreG and LLRG,but this effect must be tested on a sample of less luminous galaxies,likely to host smaller black holes. In the unifying model for BL Lacsand radio-galaxies, CoreG likely represent the counterparts of the largepopulation of low luminosity BL Lac now emerging from the surveys at lowradio flux limits. This suggests the presence of relativistic jets alsoin these quasi-quiescent early-type "core" galaxies.

Nearby early-type galaxies with ionized gas. II. Line-strength indices for 18 additional galaxies
We previously presented a data-set of line-strength indices for 50early-type galaxies in the nearby Universe. The galaxy sample is biasedtoward galaxies showing emission lines, located in environmentscorresponding to a broad range of local galaxy densities, althoughpredominantly in low density environments. The present addendum enlargesthe above data-set of line-strength indices by analyzing 18 additionalearly-type galaxies (three galaxies, NGC 3607, NGC 5077 and NGC 5898were presented in the previous set). We measured 25 line-strengthindices, defined by the Lick IDS "standard" system (Trager et al. 1998,ApJS, 116, 1; Worthey & Ottaviani 1997, ApJS, 111, 377), for 7luminosity weighted apertures and 4 gradients of each galaxy. Thisaddendum presents the line-strength data-set and compares it with theavailable data in the literature.

Stellar populations in a complete sample of local radio galaxies
We investigate the nature of the continuum emission and stellarpopulations in the inner 1-3 kpc of a complete sample of 24 southernradio galaxies, and we compare the results with a control sample of 18non-active early-type galaxies. 12 of the radio galaxies are classifiedas Fanaroff-Riley type I (FR I), eight as FR II and four as intermediateor undefined type (FR x). Optical long-slit spectra are used to performspectral synthesis as a function of distance from the nucleus at anaverage sampling of 0.5-1.0 kpc and to quantify the relativecontributions of a blue featureless continuum and stellar populationcomponents of different ages. Our main finding is a systematicdifference between the stellar populations of the radio and controlsample galaxies: the former have a larger contribution from anintermediate-age (1 Gyr) component, suggesting a connection between thepresent radio activity and a starburst which occurred ~1 Gyr ago. Inaddition, we find a correlation between the contribution of the 1-Gyrcomponent and the radio power, suggesting that more massive starburstshave led to more powerful radio emission. A similar relation is foundbetween the radio power and the mean age of the stellar population, inthe sense that stronger nuclear activity is found in younger galaxies.We also find that the stellar populations of FR I galaxies are, onaverage, older and more homogeneous than those of FR IIs. Significantpopulation gradients were found in only four radio galaxies, which arealso those with more than 10 per cent of their total flux at 4020Åcontributed by age components younger than 100 Myr and/or afeatureless continuum (indistinguishable from a 3-Myr-old stellarpopulation).

The X-ray emission properties and the dichotomy in the central stellar cusp shapes of early-type galaxies
The Hubble Space Telescope has revealed a dichotomy in the centralsurface brightness profiles of early-type galaxies, which havesubsequently been grouped into two families: core, boxy, anisotropicsystems; and cuspy (`power-law'), discy, rotating ones. Here weinvestigate whether a dichotomy is also present in the X-ray propertiesof the two families. We consider both their total soft emission(LSX,tot), which is a measure of the galactic hot gascontent, and their nuclear hard emission (LHX,nuc), mostlycoming from Chandra observations, which is a measure of the nuclearactivity. At any optical luminosity, the highest LSX,totvalues are reached by core galaxies; this is explained by their beingthe central dominant galaxies of groups, subclusters or clusters, inmany of the logLSX,tot (ergs-1) >~ 41.5 cases.The highest LHX,nuc values, similar to those of classicalactive galactic nuclei (AGNs), in this sample are hosted only by core orintermediate galaxies; at low luminosity AGN levels, LHX,nucis independent of the central stellar profile shape. The presence ofoptical nuclei (also found by HST) is unrelated to the level ofLHX,nuc, even though the highest LHX,nuc are allassociated with optical nuclei. The implications of these findings forgalaxy evolution and accretion modalities at the present epoch arediscussed.

Group, field and isolated early-type galaxies - II. Global trends from nuclear data
We have derived ages, metallicities and enhanced-element ratios[α/Fe] for a sample of 83 early-type galaxies essentially ingroups, the field or isolated objects. The stellar-population propertiesderived for each galaxy correspond to the nuclear re/8aperture extraction. The median age found for Es is 5.8+/-0.6 Gyr andthe average metallicity is +0.37+/-0.03 dex. For S0s, the median age is3.0+/-0.6 Gyr and [Z/H]= 0.53+/-0.04 dex. We compare the distribution ofour galaxies in the Hβ-[MgFe] diagram with Fornax galaxies. Ourelliptical galaxies are 3-4 Gyr younger than Es in the Fornax cluster.We find that the galaxies lie in a plane defined by [Z/H]= 0.99logσ0- 0.46 log(age) - 1.60, or in linear terms Z~σ0× (age) -0.5. More massive (largerσ0) and older galaxies present, on average, large[α/Fe] values, and therefore must have undergone shorterstar-formation time-scales. Comparing group against field/isolatedgalaxies, it is not clear that environment plays an important role indetermining their stellar-population history. In particular, ourisolated galaxies show ages differing by more than 8 Gyr. Finally weexplore our large spectral coverage to derive log(O/H) metallicity fromthe Hα and NIIλ6584 and compare it with model-dependent[Z/H]. We find that the O/H abundances are similar for all galaxies, andwe can interpret it as if most chemical evolution has already finishedin these galaxies.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis
X-ray observations have revealed in other galaxies a class ofextranuclear X-ray point sources with X-ray luminosities of1039-1041 ergs s-1, exceeding theEddington luminosity for stellar mass X-ray binaries. Theseultraluminous X-ray sources (ULXs) may be powered by intermediate-massblack holes of a few thousand Msolar or stellar mass blackholes with special radiation processes. In this paper, we present asurvey of ULXs in 313 nearby galaxies withD25>1' within 40 Mpc with 467 ROSAT HighResolution Imager (HRI) archival observations. The HRI observations arereduced with uniform procedures, refined by simulations that help definethe point source detection algorithm employed in this survey. A sampleof 562 extragalactic X-ray point sources withLX=1038-1043 ergs s-1 isextracted from 173 survey galaxies, including 106 ULX candidates withinthe D25 isophotes of 63 galaxies and 110 ULX candidatesbetween 1D25 and 2D25 of 64 galaxies, from which aclean sample of 109 ULXs is constructed to minimize the contaminationfrom foreground or background objects. The strong connection betweenULXs and star formation is confirmed based on the striking preference ofULXs to occur in late-type galaxies, especially in star-forming regionssuch as spiral arms. ULXs are variable on timescales over days to yearsand exhibit a variety of long term variability patterns. Theidentifications of ULXs in the clean sample show some ULXs identified assupernovae (remnants), H II regions/nebulae, or young massive stars instar-forming regions, and a few other ULXs identified as old globularclusters. In a subsequent paper, the statistic properties of the surveywill be studied to calculate the occurrence frequencies and luminosityfunctions for ULXs in different types of galaxies to shed light on thenature of these enigmatic sources.

Mid-Infrared Emission from Elliptical Galaxies: Sensitivity to Stellar Age
Mid-infrared observations (3.6-24 μm) of normal giant ellipticalgalaxies with the Spitzer Space Telescope are consistent with purepopulations of very old stars with no evidence of younger stars. Most ofthe stars in giant elliptical galaxies are old, but the mean stellar agedetermined from Balmer absorption in optical spectra can appear muchyounger due to a small admixture of younger stars. The mean stellar agecan also be determined from the spectral energy distribution in themid-infrared, which decreases with time relative to the optical emissionand shifts to shorter wavelengths. The observed flux ratiosF8μm/F3.6μm andF24μm/F3.6μm for elliptical galaxies withthe oldest Balmer line ages are lower than predicted by recent models ofsingle stellar populations. For elliptical galaxies with the youngestBalmer line ages in our sample, 3-5 Gyr, the flux ratiosF24μm/F3.6μm are identical to those of theoldest stars. When theoretical mid-IR spectra of old (12 Gyr) and youngstellar populations are combined, errors in theF24μm/F3.6μm observations are formallyinconsistent with a mass fraction of young stars that exceeds ~1%. Thisis less than the fraction of young stars expected in discussions ofrecent surveys of elliptical galaxies at higher redshifts. However, thisinconsistency between Balmer line ages and those inferred from mid-IRobservations must be regarded as provisional until more accurateobservations and theoretical spectra become available. Finally, there isno evidence to date that central disks or patches of dust commonlyvisible in optical images of elliptical galaxies contribute sensibly tothe mid-IR spectrum.

The Epochs of Early-Type Galaxy Formation as a Function of Environment
The aim of this paper is to set constraints on the epochs of early-typegalaxy formation through the ``archaeology'' of the stellar populationsin local galaxies. Using our models of absorption-line indices thataccount for variable abundance ratios, we derive ages, totalmetallicities, and element ratios of 124 early-type galaxies in high-and low-density environments. The data are analyzed by comparison withmock galaxy samples created through Monte Carlo simulations taking thetypical average observational errors into account, in order to eliminateartifacts caused by correlated errors. We find that all threeparameters, age, metallicity, and α/Fe ratio, are correlated withvelocity dispersion. We show that these results are robust againstrecent revisions of the local abundance pattern at high metallicities.To recover the observed scatter we need to assume an intrinsic scatterof about 20% in age, 0.08 dex in [Z/H], and 0.05 dex in [α/Fe].All low-mass objects withM*<~1010Msolar (σ<~130kms-1) show evidence for the presence of intermediate-agestellar populations with low α/Fe ratios. About 20% of theintermediate-mass objects with1010<~M*/Msolar<~1011[110<~σ/(kms-1)<~230 both elliptical andlenticular galaxies] must have either a young subpopulation or a bluehorizontal branch. On the basis of the above relationships, valid forthe bulk of the sample, we show that the Mg-σ relation is mainlydriven by metallicity, with similar contributions from the α/Feratio (23%) and age (17%). We further find evidence for an influence ofthe environment on the stellar population properties. Massive early-typegalaxies in low-density environments seem on average ~2 Gyr younger andslightly (~0.05-0.1 dex) more metal-rich than their counterparts inhigh-density environments. No offsets in the α/Fe ratios areinstead detected. With the aid of a simple chemical evolution model, wetranslate the derived ages and α/Fe ratios into star formationhistories. We show that most star formation activity in early-typegalaxies is expected to have happened between redshifts ~3 and 5 inhigh-density environments and between redshifts 1 and 2 in low-densityenvironments. We conclude that at least 50% of the total stellar massdensity must have already formed at z~1, in good agreement withobservational estimates of the total stellar mass density as a functionof redshift. Our results suggest that significant mass growth in theearly-type galaxy population below z~1 must be restricted to lessmassive objects, and a significant increase of the stellar mass densitybetween redshifts 1 and 2 should be present, caused mainly by the fieldgalaxy population. The results of this paper further imply the presenceof vigorous star formation episodes in massive objects at z~2-5 andevolved elliptical galaxies around z~1, both observationally identifiedas SCUBA galaxies and extremely red objects, respectively.

Star Formation Histories of Nearby Elliptical Galaxies. I. Volume-Limited Sample
This work presents high signal-to-noise ratio spectroscopic observationsof a representative sample of nearby elliptical galaxies. Theseobservations provide a strong test of models for the formation ofelliptical galaxies and their star formation histories. Combining thesedata with the González data set, a volume-limited sample of 45galaxies has been defined. Results are in agreement with previousstudies: the existence of the metallicity hyperplane and the Z-plane ofTrager and coworkers is confirmed, and the distribution is clearly dueto physical variations in stellar population parameters and notmeasurement uncertainty. Trends between stellar population parametersand galaxy structural parameters suggest that angular momentum maydetermine the chemical abundance of a galaxy at a given mass.

The NGC 5846 Group: Dynamics and the Luminosity Function to MR=-12
We conduct a photometric and spectroscopic survey of a 10deg2 region surrounding the nearby NGC 5846 group ofgalaxies, using the Canada-France-Hawaii and Keck I telescopes to studythe population of dwarf galaxies as faint as MR=-10.Candidates are identified on the basis of quantitative surfacebrightness and qualitative morphological criteria. Spectroscopic followup and a spatial correlation analysis provide the basis for affirminggroup memberships. Altogether, 324 candidates are identified, and 83have spectroscopic membership confirmation. We argue on statisticalgrounds that a total of 251+/-10 galaxies in our sample are groupmembers. The observations, together with archival Sloan Digital SkySurvey, ROSAT, XMM-Newton, and ASCA data, suggest that the giantellipticals NGC 5846 and NGC 5813 are the dominant components ofsubgroups separated by 600 kpc in projection and embedded in a 1.6 Mpcdiameter dynamically evolved halo. The galaxy population isoverwhelmingly early type. The group velocity dispersion is 322 kms-1, its virial mass is 8.4×1013Msolar, and M/LR=320 MsolarL-1solar. The ratio of dwarfs to giants is largecompared with other environments in the Local Supercluster studied, and,correspondingly, the luminosity function is relatively steep, with afaint-end Schechter function slope of αd=-1.3+/-0.1(statistical) +/-0.1 (systematic) at our completeness limit ofMR=-12.

The Centers of Early-Type Galaxies with Hubble Space Telescope. V. New WFPC2 Photometry
We present observations of 77 early-type galaxies imaged with the PC1CCD of the Hubble Space Telescope (HST) WFPC2. ``Nuker-law'' parametricfits to the surface brightness profiles are used to classify the centralstructure into ``core'' or ``power-law'' forms. Core galaxies aretypically rounder than power-law galaxies. Nearly all power-law galaxieswith central ellipticities ɛ>=0.3 have stellar disks,implying that disks are present in power-law galaxies withɛ<0.3 but are not visible because of unfavorable geometry. Afew low-luminosity flattened core galaxies also have disks; these may betransition forms from power-law galaxies to more luminous core galaxies,which lack disks. Several core galaxies have strong isophote twistsinterior to their break radii, although power-law galaxies have interiortwists of similar physical significance when the photometricperturbations implied by the twists are evaluated. Central colorgradients are typically consistent with the envelope gradients; coregalaxies have somewhat weaker color gradients than power-law galaxies.Nuclei are found in 29% of the core galaxies and 60% of the power-lawgalaxies. Nuclei are typically bluer than the surrounding galaxy. Whilesome nuclei are associated with active galactic nuclei (AGNs), just asmany are not; conversely, not all galaxies known to have a low-level AGNexhibit detectable nuclei in the broadband filters. NGC 4073 and 4382are found to have central minima in their intrinsic starlightdistributions; NGC 4382 resembles the double nucleus of M31. In general,the peak brightness location is coincident with the photocenter of thecore to a typical physical scale of <1 pc. Five galaxies, however,have centers significantly displaced from their surrounding cores; thesemay be unresolved asymmetric double nuclei. Finally, as noted byprevious authors, central dust is visible in about half of the galaxies.The presence and strength of dust correlates with nuclear emission;thus, dust may outline gas that is falling into the central black hole.The prevalence of dust and its morphology suggest that dust clouds form,settle to the center, and disappear repeatedly on ~108 yrtimescales. We discuss the hypothesis that cores are created by thedecay of a massive black hole binary formed in a merger. Apart fromtheir brightness profiles, there are no strong differences between coregalaxies and power-law galaxies that demand this scenario; however, therounder shapes of core, their lack of disks, and their reduced colorgradients may be consistent with it.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained at the Space Telescope Science Institute, which is operated bythe Association of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555. These observations are associated withGO and GTO proposals 5236, 5446, 5454, 5512, 5943, 5990, 5999, 6099,6386, 6554, 6587, 6633, 7468, 8683, and 9107.

Near infra-red and optical colour gradients in E-type galaxies. Inferences on dust content
Colour gradients are considered for a sample of circa 50 E-type galaxiesin the Local Supercluster. The new data includes isophotal colourprofiles in J-H, J-K, V-J and V-K, measured using 2MASS frames mostlyfrom the Large Galaxies Atlas, V frames from previous work and Vprofiles from the literature. This is supplemented by U-B, B-V, B-R, V-Icolour gradients obtained anew from published photometric data. Colourgradients in E galaxies show remarkably large variations from object toobject and do not correlate with other properties. Metallicity gradientsare the primary cause as shown before. Age gradients with oppositeeffects are possibly needed to explain objects with small colourgradients. Some empirical evidence of such age effects has been foundfor a subset of objects with morphological peculiarities and youngerstars mixed. Dust has only modest effects on colour gradients, as shownby the fact that objects with zero IRAS 100 μ flux have the sameaverage values of the gradients, except in V-J and V-K, as those withnon zero flux (cf. Table 7). This last subsample however exhibits poorbut definite correlations between IRAS flux and gradients, which mightbe caused by the presence of a few relatively dusty galaxies in thesample. Given the absence of a correlation between any gradients andgalaxy velocity dispersion (and hence mass), the observations do notagree with the predictions of the monolithic scenario for the formationof E galaxies. Simulated datasets of “dummy” objectsmimicking the hierarchical scenario have been obtained, and used to testa technique for estimating the dust content of E-galaxies from thecomparison of the V-K (or V-J) colour gradients with the U-B (or B-V)ones: the contents of diffuse dust, gauged in terms of published models,are obtained for a dozen objects.

The host galaxy/AGN connection in nearby early-type galaxies. Sample selection and hosts brightness profiles
This is the first of a series of three papers exploring the connectionbetween the multiwavelength properties of AGNs in nearby early-typegalaxies and the characteristics of their hosts. We selected twosamples, both with high resolution 5 GHz VLA observations available andproviding measurements down to 1 mJy level, reaching radio-luminositiesas low as 1019 W Hz-1. We focus on the 116radio-detected galaxies as to boost the fraction of AGN with respect toa purely optically selected sample. Here we present the analysis of theoptical brightness profiles based on archival HST images, available for65 objects. We separate early-type galaxies on the basis of the slope oftheir nuclear brightness profiles, into core and power-law galaxiesfollowing the Nuker's scheme, rather than on the traditionalmorphological classification (i.e. into E and S0 galaxies). Our sampleof AGN candidates is indistinguishable, when their brightness profilesare concerned, from galaxies of similar optical luminosity but hostingweaker (or no) radio-sources. We confirm previous findings thatrelatively bright radio-sources (Lr > 1021.5 WHz-1) are uniquely associated to core galaxies. However,below this threshold in radio-luminosity core and power-law galaxiescoexist and they do not show any apparent difference in theirradio-properties. Not surprisingly, since our sample is deliberatelybiased to favour the inclusion of active galaxies, we found a higherfraction of optically nucleated galaxies. Addressing the multiwavelengthproperties of these nuclei will be the aim of the two forthcomingpapers.

Are radio galaxies and quiescent galaxies different? Results from the analysis of HST brightness profiles
We present a study of the optical brightness profiles of early typegalaxies, using a number of samples of radio galaxies and opticallyselected elliptical galaxies. For the radio galaxy samples - B2 ofFanaroff-Riley type I and 3C of Fanaroff-Riley type II - we determined anumber of parameters that describe a "Nuker-law" profile, which werecompared with those already known for the optically selected objects. Wefind that radio active galaxies are always of the "core" type (i.e. aninner Nuker law slope γ < 0.3). However, there are core-typegalaxies which harbor no significant radio source and which areindistinguishable from the radio active galaxies. We do not find anyradio detected galaxy with a power law profile (γ > 0.5). Thisdifference is not due to any effect with absolute magnitude, since in aregion of overlap in magnitude the dichotomy between radio active andradio quiescent galaxies remains. We speculate that core-type objectsrepresent the galaxies that have been, are, or may become, radio activeat some stage in their lives; active and non-active core-type galaxiesare therefore identical in all respects except their eventualradio-activity: on HST scales we do not find any relationship betweenboxiness and radio-activity. There is a fundamental plane, defined bythe parameters of the core (break radius rb and breakbrightness μ_b), which is seen in the strong correlation betweenrb and μ_b. The break radius is also linearly proportionalto the optical Luminosity in the I band. Moreover, for the few galaxieswith an independently measured black hole mass, the break radius turnsout to be tightly correlated with MBH. The black hole masscorrelates even better with the combination of fundamental planeparameters rb and μ_b, which represents the centralvelocity dispersion.

A dichotomy in the orientation of dust and radio jets in nearby low-power radio galaxies
We examine the properties of central dust in nearby quiescent and activeearly-type galaxies. The active galaxies are low-power radio galaxieswith Fanaroff & Riley type I or I/II radio jets. We focus on (a) thecomparison of the dust distributions in the active and quiescent galaxysamples; and (b) the relation between the radio jet and dustorientations. Our main observational conclusions are: (i) in line withprevious studies, the dust detection rate is higher in radio-jetgalaxies than in non radio-jet galaxies; (ii) radio galaxies contain ahigher fraction of regular dust “ellipses” compared toquiescent galaxies which contain more often irregular dustdistributions; (iii) the morphology, size and orientation of dustellipses and lanes in quiescent early-types and active early-types withkpc-scale radio jets is very similar; (iv) dust ellipses are alignedwith the major axis of the galaxy, dust lanes do not show a preferredalignment except for large (>kpc) dust lanes which are aligned withthe minor axis of the galaxy; and (v) as projected on the sky, jets donot show a preferred orientation relative to the galaxy major axis (andhence dust ellipses), but jets are preferentially perpendicular to dustlanes. We show that the dust ellipses are consistent with being nearlycircular thin disks viewed at random viewing angles. The lanes arelikely warped dust structures, which may be in the process of settlingdown to become regular disks or are being perturbed by anon-gravitational force. We use the observed dust-jet orientations toconstrain the three-dimensional angle θDJ between jetand dust. For dust-lane galaxies, the jet is approximately perpendicularto the dust structure, while for dust-ellipse galaxies there is a muchwider distribution of θDJ. We discuss two scenariosthat could explain the dust/jet/galaxy orientation dichotomy. If lanesare indeed settling, then the jet orientation apparently is roughlyaligned with the angular momentum of the dust before it settles. Iflanes are perturbed by a jet-related force, it appears that it causesthe dust to move out of its equilibrium plane in the galaxy into a planewhich is perpendicular to the jet.

Nuclear activity and the dynamics of elliptical galaxies
This Letter looks for any correlation between the internal dynamics ofelliptical galaxies and the relatively mild nuclear activity found inmany such systems. We show that there is such a relation in the sensethat the active ellipticals tend to be significantly less rotationallysupported than their inactive cousins. The correlation can partly berelated to the galaxies' luminosities: the brightest galaxies tend to bemore active and less rotationally supported. However, even at lowerluminosities the active and inactive galaxies seem to havesystematically different dynamics. This variation suggests that thereare significant large-scale structural differences between active andinactive elliptical galaxies, and hence that the existence of both typesof system cannot just be the result of random sporadic nuclear activity.

The SAURON project - III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies
We present the stellar kinematics of 48 representative elliptical andlenticular galaxies obtained with our custom-built integral-fieldspectrograph SAURON operating on the William Herschel Telescope. Thedata were homogeneously processed through a dedicated reduction andanalysis pipeline. All resulting SAURON data cubes were spatially binnedto a constant minimum signal-to-noise ratio. We have measured thestellar kinematics with an optimized (penalized pixel-fitting) routinewhich fits the spectra in pixel space, via the use of optimal templates,and prevents the presence of emission lines to affect the measurements.We have thus generated maps of the mean stellar velocity V, the velocitydispersion σ, and the Gauss-Hermite moments h3 andh4 of the line-of-sight velocity distributions. The mapsextend to approximately one effective radius. Many objects displaykinematic twists, kinematically decoupled components, central stellardiscs, and other peculiarities, the nature of which will be discussed infuture papers of this series.

Mid-Infrared Galaxy Morphology along the Hubble Sequence
The mid-infrared emission from 18 nearby galaxies were imaged with theInfrared Array Camera (IRAC) on the Spitzer Space Telescope, samplingthe spatial distributions of the reddening-free stellar photosphericemission and the warm dust in the interstellar medium. These twocomponents provide a new framework for galaxy morphology classificationin which the presence of spiral arms and their emission strengthrelative to the starlight can be measured directly and with highcontrast. Four mid-infrared classification methods are explored, threeof which are based on quantitative global parameters (colors andbulge-to-disk ratio) that are similar to those used in the past foroptical studies; in this limited sample, all correlate well withtraditional B-band classification. We suggest reasons why infraredclassification may be superior to optical classification.

Spatial Distribution of Warm Dust in Early-Type Galaxies
Images taken with the Infrared Array Camera on the Spitzer SpaceTelescope show that the spatial distribution of warm dust emission inlenticular galaxies is often organized into dynamically stablestructures strongly resembling spiral arms. These galaxies havebulge-to-disk ratios and colors for their stellar content that areappropriate for their morphological classification. Two of the threegalaxies with warm dust detected at 8.0 μm also show far-IR emissionexpected from that dust. More importantly, the [5.8]-[8.0] color of thedust emission matches the colors found for late-type, star-forminggalaxies, as well as theoretical predictions for polycyclic aromatichydrocarbon emission from dust grains. The spatially resolved duststructures may be powerful indicators of the evolutionary history of thelenticular class of galaxies, either as a tracer of ongoing quiescentstar formation or as a fossil record of a previous episode of moreactive star formation.

Cold Dust in Early-Type Galaxies. I. Observations
We describe far-infrared observations of early-type galaxies selectedfrom the Infrared Space Observatory (ISO) archive. This ratherinhomogeneous sample includes 39 giant elliptical galaxies and 14 S0 (orlater) galaxies. These galaxies were observed with the array photometerPHOT on-board the ISO satellite using a variety of different observingmodes-sparse maps, mini-maps, oversampled maps, and singlepointings-each of which requires different and often rather elaboratephotometric reduction procedures. The ISO background data agree wellwith the COBE-DIRBE results to which we have renormalized ourcalibrations. As a further check, the ISO fluxes from galaxies at 60 and100 μm agree very well with those previously observed with IRAS atthese wavelengths. The spatial resolution of ISO is several timesgreater than that of IRAS, and the ISO observations extend out to 200μm, which views a significantly greater mass of colder dust notassessable to IRAS. Most of the galaxies are essentially point sourcesat ISO resolution, but a few are clearly extended at FIR wavelengthswith image sizes that increase with FIR wavelength. The integratedfar-infrared luminosities do not correlate with optical luminosities,suggesting that the dust may have an external, merger-related origin. Ingeneral, the far-infrared spectral energy distributions can be modeledwith dust at two temperatures, ~43 and ~20 K, which probably representlimits of a continuous range of temperatures. The colder dust componentdominates the total mass of dust, 106-107Msolar, which is typically more than 10 times larger than thedust masses previously estimated for the same galaxies using IRASobservations. For S0 galaxies we find that the optically normalizedfar-infrared luminosity LFIR/LB correlatesstrongly with the mid-infrared luminosityL15μm/LB, but that correlation is weaker forelliptical galaxies.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, theNetherlands, and United Kingdom) and with the participation of ISAS andNASA.

Companions to Isolated Elliptical Galaxies: Revisiting the Bothun-Sullivan Sample
We investigate the number of physical companion galaxies for a sample ofrelatively isolated elliptical galaxies. The NASA/IPAC ExtragalacticDatabase (NED) has been used to reinvestigate the incidence of satellitegalaxies for a sample of 34 elliptical galaxies, first investigated byBothun & Sullivan using a visual inspection of Palomar Sky Surveyprints out to a projected search radius of 75 kpc. We have repeatedtheir original investigation using data cataloged in NED. Nine of theseelliptical galaxies appear to be members of galaxy clusters; theremaining sample of 25 galaxies reveals an average of +1.0+/-0.5apparent companions per galaxy within a projected search radius of 75kpc, in excess of two equal-area comparison regions displaced by 150-300kpc. This is significantly larger than the +0.12+/-0.42companions/galaxy found by Bothun & Sullivan for the identicalsample. Making use of published radial velocities, mostly availablesince the completion of the Bothun-Sullivan study, identifies thephysical companions and gives a somewhat lower estimate of +0.4companions per elliptical galaxy. This is still 3 times larger than theoriginal statistical study, but given the incomplete and heterogeneousnature of the survey redshifts in NED, it still yields a firm lowerlimit on the number (and identity) of physical companions. An expansionof the search radius out to 300 kpc, again restricted to sampling onlythose objects with known redshifts in NED, gives another lower limit of4.5 physical companions per galaxy. (Excluding five elliptical galaxiesin the Fornax Cluster, this average drops to 3.5 companions perelliptical.) These physical companions are individually identified andlisted, and the ensemble-averaged radial density distribution of theseassociated galaxies is presented. For the ensemble, the radial densitydistribution is found to have a falloff consistent withρ~R-0.5 out to approximately 150 kpc. For non-FornaxCluster companions the falloff continues out to the 300 kpc limit of thesurvey. The velocity dispersion of these companions is found to reach amaximum of 350 km s-1 at around 120 kpc, after which theyfall at a rate consistent with Keplerian falloff. This falloff may thenindicate the detection of a cut-off in the mass-density distribution inthe elliptical galaxies' dark matter halo at ~100 kpc.

Revised Rates of Stellar Disruption in Galactic Nuclei
We compute rates of tidal disruption of stars by supermassive blackholes in galactic nuclei, using downwardly revised black hole massesfrom the MBH-σ relation. In galaxies with steep nucleardensity profiles, which dominate the overall event rate, the disruptionfrequency varies inversely with assumed black hole mass. We compute atotal rate for nondwarf galaxies of ~10-5 yr-1Mpc-3, about a factor of 10 higher than in earlier studies.Disruption rates are predicted to be highest in nucleated dwarfgalaxies, assuming that such galaxies contain black holes. Monitoring ofa rich galaxy cluster for a few years could rule out the existence ofintermediate-mass black holes in dwarf galaxies.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Virgo
Right ascension:15h01m11.00s
Declination:+01°42'05.0"
Aparent dimensions:4.169′ × 2.884′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 5813
HYPERLEDA-IPGC 53643

→ Request more catalogs and designations from VizieR