Contents
Images
Upload your image
DSS Images Other Images
Related articles
Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| New periodic variables from the Hipparcos epoch photometry Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.
| The Maximum Age of Trapezium Systems We sought to determine the maximum age of Trapezium systems by studyingpossible trapezium systems that were selected independently of theiroccurrence in H II regions. We started with the unpublished catalog byAllen, Tapia, & Parrao of all the known visual systems having threeor more stars in which the maximum separation is less than 3.0 times theminimum separation. Their catalog has 968 such systems whose mostfrequent primary type is F, which does not describe young systems. Witha CCD on the Kitt Peak 0.9 m telescope we obtained UBV frames for 265systems accessible with our equipment on Kitt Peak. The frames were usedto obtain UBV photometry for about 1500 stars with an accuracy of+/-0.04 mag between V=7 and 14 mag. Also these frames were used toobtain astrometry with an accuracy of +/-0.015d in position angle and+/-0.01" in separation. For the brightest star in each system weobtained a spectral type to determine the distance and reddening to thesystem. The measures were used to determine physical membership fromstars that (1) fit a single color-magnitude diagram, (2) fit a commoncolor-color diagram, and (3) show no astrometric motion compared tovisual measures made (mostly) a century ago. Combining the results withspectroscopic data for 20 additional Allen et al. systems by Abt, wefound that 126 systems had only optical companions to the primaries, 116systems contained only a single physical pair, 13 were hierarchicalsystems with 3-6 members and having separation ratios of more than afactor of 10, two were small clusters, and only 28 fitted the criteriaof Trapezium systems. However, as shown by Ambartsumian, about 9% of thehierarchical systems should appear to be Trapezium systems inprojection. Those, like other hierarchical systems, have a broaddistribution of primary spectral types. We isolated 14 systems that seemto be true Trapezium systems. They have primary types of B3 or earlier,indicating a maximum age of about 5×107 yr. This upperlimit is consistent with the estimate made by Allen & Poveda for anage of several million years for these dynamically unstable systems.These Trapezia are also large with a median radius of 0.2 pc and amaximum radius of 2.6 pc. We asked why the sample of 285 possibleTrapezium systems yielded only 14 true ones, despite the attempt made byAllen et al. to eliminate optical companions with a ``1% filter,'' i.e.,demanding that each companion have less than a 1% chance of being afield star of that magnitude within a circle of its radius from theprimary. The explanation seems to be that the double star catalogs arebased mostly on BD magnitudes that, fainter than V=12 mag, aresystematically too faint by 1 mag.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Grande Ourse |
Right ascension: | 10h25m41.09s |
Declination: | +40°54'39.4" |
Apparent magnitude: | 8.093 |
Distance: | 275.482 parsecs |
Proper motion RA: | -31.5 |
Proper motion Dec: | -9.2 |
B-T magnitude: | 9.36 |
V-T magnitude: | 8.198 |
Catalogs and designations:
|