Contents
Images
Upload your image
DSS Images Other Images
Related articles
Rotational Velocities for M Dwarfs We present spectroscopic rotation velocities (v sin i) for 56 M dwarfstars using high-resolution Hobby-Eberly Telescope High ResolutionSpectrograph red spectroscopy. In addition, we have also determinedphotometric effective temperatures, masses, and metallicities ([Fe/H])for some stars observed here and in the literature where we couldacquire accurate parallax measurements and relevant photometry. We haveincreased the number of known v sin i values for mid M stars by around80% and can confirm a weakly increasing rotation velocity withdecreasing effective temperature. Our sample of v sin is peak at lowvelocities (~3 km s-1). We find a change in therotational velocity distribution between early M and late M stars, whichis likely due to the changing field topology between partially and fullyconvective stars. There is also a possible further change in therotational distribution toward the late M dwarfs where dust begins toplay a role in the stellar atmospheres. We also link v sin i to age andshow how it can be used to provide mid-M star age limits. When allliterature velocities for M dwarfs are added to our sample, there are198 with v sin i <= 10 km s-1 and 124 in themid-to-late M star regime (M3.0-M9.5) where measuring precision opticalradial velocities is difficult. In addition, we also search the spectrafor any significant Hα emission or absorption. Forty three percentwere found to exhibit such emission and could represent young, activeobjects with high levels of radial-velocity noise. We acquired twoepochs of spectra for the star GJ1253 spread by almost one month and theHα profile changed from showing no clear signs of emission, toexhibiting a clear emission peak. Four stars in our sample appear to below-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129and Gl802 exhibiting double Hα emission features. The tablespresented here will aid any future M star planet search target selectionto extract stars with low v sin i.Based on observations obtained with the Hobby-Eberly Telescope, which isa joint project of the University of Texas at Austin, the PennsylvaniaState University, Stanford University,Ludwig-Maximilians-Universität München, andGeorg-August-Universität Göttingen.
| Radio Interferometric Planet Search. I. First Constraints On Planetary Companions For Nearby, Low-Mass Stars From Radio Astrometry Radio astrometry of nearby, low-mass stars has the potential to be apowerful tool for the discovery and characterization of planetarycompanions. We present a Very Large Array survey of 172 active M dwarfsat distances of less than 10 pc. Twenty-nine stars were detectedwith flux densities greater than 100 μJy. We observed seven ofthese stars with the Very Long Baseline Array at milliarcsecondresolution in three separate epochs. With a detection threshold of500 μJy in images of sensitivity 1σ ~ 100 μJy, wedetected three stars three times (GJ 65B, GJ 896A, GJ 4247), one startwice (GJ 285), and one star once (GJ 803). Two stars were undetected(GJ 412B and GJ 1224). For the four stars detected in multiple epochs,residuals from the optically determined apparent motions have anroot-mean-square deviation of ~0.2 milliarcseconds, consistent withstatistical noise limits. Combined with previous optical astrometry,these residuals provide acceleration upper limits that allow us toexclude planetary companions more massive than 3-6 M Jup at adistance of ~1 AU with a 99% confidence level.
| Characterizing the Near-UV Environment of M Dwarfs We report the results of our Hubble Space Telescope (HST) snapshotsurvey with the ACS HRC PR200L prism, designed to measure the near-UVemission in a sample of nearby M dwarfs. Thirty-three stars wereobserved, spanning the mass range from 0.1 to 0.6 solar masses(Teff~2200-4000 K) where the UV energy distributions varywidely between active and inactive stars. These observations providemuch needed constraints on models of the habitability zone and theatmospheres of possible terrestrial planets orbiting M dwarf hosts andwill be useful in refining the target selection for future spacemissions such as Terrestrial Planet Finder (TPF). We compare our datawith a new generation of M dwarf atmospheric models and discuss theirimplications for the chromospheric energy budget. These NUV data willalso be valuable in conjunction with existing optical, FUV, and X-raydata to explore unanswered questions regarding the dynamo generation andmagnetic heating in low-mass stars.
| The effect of activity on stellar temperatures and radii Context: Recent analyses of low-mass eclipsing binary stars haveunveiled a significant disagreement between the observations andpredictions of stellar structure models. Results show that theoreticalmodels underestimate the radii and overestimate the effectivetemperatures of low-mass stars but yield luminosities that accord withobservations. A hypothesis based upon the effects of stellar activitywas put forward to explain the discrepancies. Aims: In this paper westudy the existence of the same trend in single active stars and providea consistent scenario to explain systematic differences between activeand inactive stars in the H-R diagram reported earlier. Methods: Theanalysis is done using single field stars of spectral types late-K and Mand computing their bolometric magnitudes and temperatures throughinfrared colours and spectral indices. The properties of the stars insamples of active and inactive stars are compared statistically toreveal systematic differences. Results: After accounting for a numberof possible bias effects, active stars are shown to be cooler thaninactive stars of similar luminosity therefore implying a larger radiusas well, in proportions that are in excellent agreement with those foundfrom eclipsing binaries. Conclusions: The present results generalisethe existence of strong radius and temperature dependences on stellaractivity to the entire population of low-mass stars, regardless of theirmembership in close binary systems.Tables 1 and 2 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/478/507
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Ca II H and K Chromospheric Emission Lines in Late-K and M Dwarfs We have measured the profiles of the Ca II H and K chromosphericemission lines in 147 main-sequence stars of spectral type M5-K7 (masses0.30-0.55 Msolar) using multiple high-resolution spectraobtained during 6 years with the HIRES spectrometer on the Keck Itelescope. Remarkably, the average FWHM, equivalent widths, and lineluminosities of Ca II H and K increase by a factor of 3 with increasingstellar mass over this small range of stellar masses. We fit the Ca II Hand K lines with a double-Gaussian model to represent both thechromospheric emission and the non-LTE central absorption. Most of thesample stars display a central absorption that is typically redshiftedby ~0.1 km s-1 relative to the emission. This implies thatthe higher level, lower density chromospheric material has a smalleroutward velocity (or higher inward velocity) by 0.1 km s-1than the lower level material in the chromosphere, but the nature ofthis velocity gradient remains unknown. The FWHM of the Ca II H and Kemission lines increase with stellar luminosity, reminiscent of theWilson-Bappu effect in FGK-type stars. Both the equivalent widths andFWHM exhibit modest temporal variability in individual stars. At a givenvalue of MV, stars exhibit a spread in both the equivalentwidth and FWHM of Ca II H and K, due both to a spread in fundamentalstellar parameters, including rotation rate, age, and possiblymetallicity, and to the spread in stellar mass at a given MV.The K line is consistently wider than the H line, as expected, and itscentral absorption is more redshifted, indicating that the H and K linesform at slightly different heights in the chromosphere where thevelocities are slightly different. The equivalent width of Hαcorrelates with Ca II H and K only for stars having Ca II equivalentwidths above ~2 Å, suggesting the existence of a magneticthreshold above which the lower and upper chromospheres become thermallycoupled.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. Keck time has been granted by both NASA and theUniversity of California.
| Simulating observable comets. III. Real stellar perturbers of the Oort cloud and their output Context: .This is the third of a series of papers on simulating themechanisms acting currently on the Oort cloud and producing the observedlong-period comets.Aims.In this paper we investigate the influence ofcurrent stellar perturbers on the Oort cloud of comets under thesimultaneous galactic disk tide. We also analyse the past motion of theobserved long-period comets under the same dynamical model to verify thewidely used definition of dynamically new comets. Methods.The action ofnearby stars and the galactic disk tide on the Oort cloud was simulated.The original orbital elements of all 386 long-period comets of qualityclasses 1 and 2 were calculated, and their motion was followednumerically for one orbital revolution into the past, down to theprevious perihelion. We also simulated the output of the close futurepass of GJ 710 through the Oort cloud. Results.The simulated flux of theobservable comets resulting from the current stellar and galacticperturbations, as well as the distribution of perihelion direction, wasobtained. The same data are presented for the future passage of GJ 710.A detailed description is given of the past evolution of aphelion andperihelion distances of the observed long-period comets. Conclusions. Weobtained no fingerprints of the stellar perturbations in the simulatedflux and its directional structure. The mechanisms producing observablecomets are highly dominated by galactic disk tide because all currentstellar perturbers are too weak. Also the effect of the close passage ofthe star GJ 710 is very difficult to recognise on the background of theGalactic-driven observable comets. For the observed comets we found only45 to be really dynamically "new" according to our definition based onthe previous perihelion distance value.
| Metallicity of M dwarfs. I. A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence We obtained high resolution ELODIE and CORALIE spectra for bothcomponents of 20 wide visual binaries composed of an F-, G- or K-dwarfprimary and an M-dwarf secondary. We analyse the well-understood spectraof the primaries to determine metallicities ([Fe/H]) for these 20systems, and hence for their M dwarf components. We pool thesemetallicities with determinations from the literature to obtain aprecise (±0.2 dex) photometric calibration of M dwarfmetallicities. This calibration represents a breakthrough in a fieldwhere discussions have had to remain largely qualitative, and it helpsus demonstrate that metallicity explains most of the large dispersion inthe empirical V-band mass-luminosity relation. We examine themetallicity of the two known M-dwarf planet-host stars, Gl876 (+0.02 dex) and Gl 436 (-0.03 dex), inthe context of preferential planet formation around metal-rich stars. Wefinally determine the metallicity of the 47 brightest single M dwarfs ina volume-limited sample, and compare the metallicity distributions ofsolar-type and M-dwarf stars in the solar neighbourhood.
| The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.
| A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog) The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| The brown dwarf population in the Chamaeleon I cloud We present the results of a multiband survey for brown dwarfs in theChamaeleon I dark cloud with the Wide Field Imager(WFI) camera at the ESO/MPG 2.2-m telescope on La Silla (Chile). Thesurvey has revealed a substantial population of brown dwarfs in thissouthern star-forming region. Candidates were selected from R, I andHα imaging observations. We also observed in two medium-bandfilters, M 855 and M 915, for spectral type determination. The formerfilter covers a wavelength range containing spectral featurescharacteristic of M-dwarfs, while the latter lies in a relativelyfeatureless wavelength region for these late-type objects. A correlationwas found between spectral type and (M 855-M 915) colour index for mid-to late M-type objects and early L-type dwarfs. With this method, weidentify most of our object candidates as being of spectral type M 5 orlater. Our results show that there is no strong drop in the number ofobjects for the latest spectral types, hence brown dwarfs may be asabundant as low-mass stars in this region. Also, both kind of objectshave a similar spatial distribution. We derive an index α = 0.6± 0.1 of the mass function in this region of dispersed starformation, in good agreement with the values obtained in other starforming regions and young clusters. Some of the brown dwarfs have strongHα emission, suggesting mass accretion. For objects with publishedinfrared photometry, we find that strong Hα emission is related toa mid-infrared excess, indicative of the existence of a circumstellardisk.Based on observations collected at the European Southern Observatory, LaSilla, Chile.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Hipparcos red stars in the HpV_T2 and V I_C systems For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997
| Radial Velocities for 889 Late-Type Stars We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.
| The Palomar/MSU Nearby Star Spectroscopic Survey. III. Chromospheric Activity, M Dwarf Ages, and the Local Star Formation History We present high-resolution echelle spectroscopy of 676 nearby M dwarfs.Our measurements include radial velocities, equivalent widths ofimportant chromospheric emission lines, and rotational velocities forrapidly rotating stars. We identify several distinct groups by theirHα properties and investigate variations in chromospheric activityamong early (M0-M2.5) and mid (M3-M6) dwarfs. Using a volume-limitedsample together with a relationship between age and chromosphericactivity, we show that the rate of star formation in the immediate solarneighborhood has been relatively constant over the last 4 Gyr. Inparticular, our results are inconsistent with recent large bursts ofstar formation. We use the correlation between Hα activity and ageas a function of color to set constraints on the properties of L and Tdwarf secondary components in binary systems. We also identify a numberof interesting stars, including rapid rotators, radial velocityvariables, and spectroscopic binaries. Observations were made at the 60inch telescope at Palomar Mountain, which is jointly owned by theCalifornia Institute of Technology and the Carnegie Institution ofWashington.
| Stellar encounters with the solar system We continue our search, based on Hipparcos data, for stars which haveencountered or will encounter the solar system(García-Sánchez et al. \cite{Garcia}). Hipparcos parallaxand proper motion data are combined with ground-based radial velocitymeasurements to obtain the trajectories of stars relative to the solarsystem. We have integrated all trajectories using three different modelsof the galactic potential: a local potential model, a global potentialmodel, and a perturbative potential model. The agreement between themodels is generally very good. The time period over which our search forclose passages is valid is about +/-10 Myr. Based on the Hipparcos data,we find a frequency of stellar encounters within one parsec of the Sunof 2.3 +/- 0.2 per Myr. However, we also find that the Hipparcos data isobservationally incomplete. By comparing the Hipparcos observations withthe stellar luminosity function for star systems within 50 pc of theSun, we estimate that only about one-fifth of the stars or star systemswere detected by Hipparcos. Correcting for this incompleteness, weobtain a value of 11.7 +/- 1.3 stellar encounters per Myr within one pcof the Sun. We examine the ability of two future missions, FAME andGAIA, to extend the search for past and future stellar encounters withthe Sun.
| Rotation and chromospheric activity in field M dwarfs We have obtained high resolution spectra for a volume-limited sample of118 field M dwarfs. From these observations we derive projectedrotational velocities and fluxes in the H_alpha and H_beta lines. 8stars are double-lined spectroscopic binaries with measured or probableperiods short enough for rotation to be tidally synchronized with theorbit, and another 11 are visual binaries where we cannot yet separatethe lines of the two stars. Of the remaining 99 stars, 24 haverotational velocities above our detection limit of ~ 2 km.s(-1) , andsome are quite fast rotators, including two with v sin i\ =~ 30 km.s(-1)and one with v sin i\ =~ 50 km.s(-1) . Given the small radii of Mdwarfs, these moderate rotational velocities correspond to rather shortmaximum rotational periods, of only 7-8 hours. These three stars aregood candidates for Doppler imaging. We find that rotation is stronglycorrelated with both spectral type and kinematic population: all starswith measurable rotation are later than M3.5, and all but one havekinematic properties typical of the young disk, or intermediate betweenthe young disk and the the old disk. We interpret this correlation asevidence for a spin-down timescale that increases with decreasing mass.At the age of the old disk or halo, all stars earlier than M5-M6(0.1-0.15Msun) have spun-down to below our detection limit,while at the age of the young disk this has only happened for starsearlier than M3.5. The one star with measurable rotation and akinematics intermediate between old disk and population II has spectraltype M6. It is probably an old star whose mass is low enough that it hasretained significant rotation up to present, still consistently withlonger spin-down times for lower mass stars. We observe, on the otherhand, no conspicuous change in the v sin i\ distribution or activitypattern at the mass (M ~ 0.35 Msun) below which stars remainfully convective down to the main sequence. These new data areconsistent with a saturated correlation between rotation and activity,similar to the one observed for younger or more massive stars:L_X/Lbol and L_{H_alpha }/Lbol both correlate withv sin i\ for v sin i\ -5km.s^{-1} and then saturate at respectively10^{-2.5} and 10^{-3.5}$. Based on observations made at the Observatoirede Haute-Provence (CNRS), France Tables 2 and 4 are also available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.
| The Palomar/MSU Nearby Star Spectroscopic Survey.II.The Southern M Dwarfs and Investigation of Magnetic Activity Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2799H&db_key=AST
| The Palomar/MSU Nearby-Star Spectroscopic Survey. I. The Northern M Dwarfs -Bandstrengths and Kinematics Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.1838R&db_key=AST
| A volume-limited ROSAT survey of extreme ultraviolet emission from all nondegenerate stars within 10 parsecs We report the results of a volume-limited ROSAT Wide Field Camera (WFC)survey of all nondegenerate stars within 10 pc. Of the 220 known starsystems within 10 pc, we find that 41 are positive detections in atleast one of the two WFC filter bandpasses (S1 and S2), while weconsider another 14 to be marginal detections. We compute X-rayluminosities for the WFC detections using Einstein Imaging ProportionalCounter (IPC) data, and these IPC luminosities are discussed along withthe WFC luminosities throughout the paper for purposes of comparison.Extreme ultraviolet (EUV) luminosity functions are computed for singlestars of different spectral types using both S1 and S2 luminosities, andthese luminosity functions are compared with X-ray luminosity functionsderived by previous authors using IPC data. We also analyze the S1 andS2 luminosity functions of the binary stars within 10 pc. We find thatmost stars in binary systems do not emit EUV radiation at levelsdifferent from those of single stars, but there may be a fewEUV-luminous multiple-star systems which emit excess EUV radiation dueto some effect of binarity. In general, the ratio of X-ray luminosity toEUV luminosity increases with increasing coronal emission, suggestingthat coronally active stars have higher coronal temperatures. We findthat our S1, S2, and IPC luminosities are well correlated withrotational velocity, and we compare activity-rotation relationsdetermined using these different luminosities. Late M stars are found tobe significantly less luminous in the EUV than other late-type stars.The most natural explanation for this results is the concept of coronalsaturation -- the idea that late-type stars can emit only a limitedfraction of their total luminosity in X-ray and EUV radiation, whichmeans stars with very low bolometric luminosities must have relativelylow X-ray and EUV luminosities as well. The maximum level of coronalemission from stars with earlier spectral types is studied also. Tounderstand the saturation levels for these stars, we have compiled alarge number of IPC luminosities for stars with a wide variety ofspectral types and luminosity classes. We show quantitatively that ifthe Sun were completely covered with X-ray-emitting coronal loops, itwould be near the saturation limit implied by this compilation,supporting the idea that stars near upper limits in coronal activity arecompletely covered with active regions.
| The low mass Hyades and the evaporation of clusters The 135 single stars and 85 binary systems, redder than R-I = +0.34 magand brighter than V = 17 mag, between alpha = 3.75 h and 5.0 h and delta= +5 deg and + 25 deg show a luminosity function that differsconsiderably from that of the general field stars within 20 pc of theSun. The ratio of double star components to single cluster membersincreases markedly with decreasing luminosity. Forty-three single starsand 16 binary systems that are members of the Hyades supercluster within20 pc of the Sun show the same luminosity function as the field stars inthat region. Fifty percent of the cluster members and 40 percent of thesupercluster members are components of binary stars. The equivalentwidths of H-alpha appear to support a range of ages (approximately 8 to16 x 108 yr) for the cluster stars and demonstrate that theoldest objects are in the supercluster. A list of cluster members, whichmay include the end of the stable main sequence, but for which accurate(R-I) photometry is not available, is included. The half-dozen knownparallax stars of the faintest luminosity contain at least onesupercluster member, TVLM 868-110639, which is probably beyond thestable, nuclear burning main sequence as a 'transitional' or 'brown'dwarf.
| The importance of surface inhomogeneities for K and M dwarf chromospheric fluxes We present published and archived spectroscopic and spectrophotometricdata of H-alpha, Ca II, Mg II, and X-rays for a large sample of K and Mdwarfs. The data set points to the importance that surfaceinhomogeneities have in the flux luminosity diagrams in these late-typedwarfs, irrespective of whether the Balmer lines are in emission orabsorption. Although supporting the fact that cooler stars exhibitincreasing levels of surface activity, evident through an increasingincidence of Balmer emission, surface inhomogeneities, or variations inthe local temperature and density structure, at the chromospheric level,dominate the total Ca II and Mg II fluxes. We show that the flux-fluxand luminosity-luminosity relations indicate differing extents ofinhomogeneity from the chromosphere through to the corona. A goodcorrelation between Ca II and Mg II fluxes indicates that they areformed in overlapping regions of the chromosphere, so that thecontribution of surface inhomogeneities is not evident from thisparticular flux-flux diagram. In the region of the upper chromospherethrough to the transition and corona, the correlation between Ly-alphaand X-ray fluxes indicates regions with similar levels of arealinhomogeneity. This appears to be uncorrelated with that at thechromospheric level.
| A photometric study of K and M dwarf stars found by Stephenson Broadband photometry has been obtained for a sample of the K and M dwarfstars found in an objective prism survey by Stephenson (1986). Among thestars with unknown proper motion, about 24 percent of those observedappear from the photometry not to be dwarfs, although the percentagevaries considerably with spectral type. For stars with V less than 11.5and B - V equal to or greater than 1.2, it is estimated that, within thearea surveyed, Stephenson's survey is about 68 percent complete.
| H-alpha photometry of dwarf K and M stars - Chromospheric activity H-alpha photometry of 118 K and M dwarfs are presented, with H-alphaequivalent width measures accurate to about 0.05 A. The data arecombined with the spectroscopic surveys of Stauffer and Hartmann (1986)and Fleming et al. (1988) to study the main features of thechromospheric activity versus mass relation for low-mass stars. An upperbound to the H-alpha equivalent width is found to be a function of themass relation (R-I). H-alpha luminosities and surface fluxes arecalculated for active stars, showing that both quantities generallydecline with R-I. The upper bound to the fraction of a star's bolometricluminosity, however, is independent of R-I. The results suggest that thechromospheres of most dMe stars with R-I less than 1.1 are in anactivity-saturated state. Also, H-alpha variability, probably due toflares, is detected in several stars.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Hydre |
Right ascension: | 08h16m07.98s |
Declination: | +01°18'09.2" |
Apparent magnitude: | 10.216 |
Distance: | 9.155 parsecs |
Proper motion RA: | -374.8 |
Proper motion Dec: | 59.4 |
B-T magnitude: | 12.195 |
V-T magnitude: | 10.38 |
Catalogs and designations:
|